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theory challenges popular assumption that rational agents use a single utility function to 

make sequential choices. It implies that the value of utility function has the same units as 
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usefulness of the theory I build a model of foraging in a stochastic environment and identify 

conditions under which natural selection may lead to risk-averse preferences.   
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1. Introduction 

The objective of this article is to propose a general model of behavior in a stochastic 

environment, to find sufficient conditions under which optimal decision policy is a single 

utility function, and to show how to calculate value of such utility function.  

Theoretical models of decisions and corresponding empirical research often assume 

that agent uses a single utility function throughout a sequence of decisions. Examples 

include models concerned with sequential consumption or investment decisions or 

experiments trying to elicit risk preferences of an agent (human or animal) by presenting 

her with a sequence of gambling choices. In this paper I show that the assumption of a 

single utility function is not generally correct and the agent’s utility function can change 

over time unless certain conditions are satisfied. For example, it is not optimal to use a 

single utility function of money for a sequence of gambling decisions if a person wishes to 

achieve a financial goal by a deadline. 

To show that utility function can change over time, I construct a discrete-time 

model of behavior in a stochastic environment (MBSE). In every period, agent is provided 

with a set of prospects – probability distributions over environment’s states. The agent 

selects one of these prospects and the environment changes its state accordingly. 

Environment’s state determines agent’s performance. Agent’s fitness depends on how well 

she maximizes her expected performance. Natural selection ensures that only agents with 

the highest fitness survive. Selecting prospects in a best way possible is thus crucial for 

survival. The optimal decision policy follows a single utility function if the environment is 

stationary, that is, roughly speaking, current events depend only on the current state rather 

than the entire state history or the period number. For non-stationary environments it is 

easy to find examples where single utility function does not maximize fitness. 

Fitness and utility are sometimes considered to be equivalent. Conversely, I 

consider them to be two distinct objects. My interpretation of the expected utility theory 

follows von Neumann and Morgenstern (1963) and Friedman and Savage (1948). Utility 

function is a function 𝑢: 𝑋 → 𝑅 where 𝑋 is a set of consumption bundles, a set of possible 

wealth or, in general, a set of states of the world. 𝑢 can be constructed from preferences 



3 

 

over 𝑋 using representation theorems. When faced with two prospects (probability 

distributions over 𝑋) individual choses prospect 𝑝 over prospect 𝑞 only if 𝐸𝑝𝑢(𝑥) ≥

𝐸𝑞𝑢(𝑥). Utility function does not depend on time and is superfluous if there is no risk 

involved, since in such case representation theorems cannot be applied. 

Fitness is often defined as the ability of an organism to propagate its genes or, more 

precisely, the reproductive success of a genotype compared with other genotypes in a 

population (Pierce, 2012, p. 710). This general definition allows to explain many traits 

observed in animals, including social behaviors such as love between siblings or general 

altruism towards strangers (Buss, 2016, p. 227, 257). However, it is hard to construct an 

empirical measure based on this definition, and various other proxy measures of fitness are 

often used instead, for example expected number of offspring or probability of survival. 

Natural selection ensures that individuals maximize fitness. Fitness in turn depends 

on the decision policy (e.g. utility function) used by an individual. This suggests a 

maximization problem in which objective function is fitness and the optimal utility 

function is a point in the space of all allowed decision policies for which the objective 

function is maximized. Rayo and Becker (2007) suggest that such setup can be interpreted 

as a principal-agent problem in which the principal (natural selection) designs the agent in 

such a way so that the agent using means available to her (utility function) maximizes 

principal’s objective (fitness). The optimization problem solved by natural selection is thus 

equivalent to the optimization problem an artificial intelligence engineer solves in order to 

design an optimal intelligent agent.  

To help the reader understand the meaning of the terms used in MBSE, I start with 

an example application and show the general theory behind it afterwards. In Section 2, I 

present a series of stochastic models of foraging whose aim is to investigate what are the 

evolutionary reasons for risk preferences. In every period, an individual consumes certain 

amount of resources. She must also ensure that she has enough resources if she wants to 

successfully procreate. This forces her to accept at least some of foraging opportunities 

(gambles on her resources) the environment provides her with. Natural selection ensures 
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that only those individuals who optimally select foraging opportunities survive. Hence, the 

problem is to find a utility function reflecting foraging preferences that maximize fitness.  

I look for the optimal utility functions using numerical methods. A few of the 

environments I consider yield at least partially concave utility function and one of the 

environments yields an S-shaped utility function. This allows for identifying the possibility 

of death and the diminishing marginal returns to having more resources as potential 

evolutionary sources of traditional risk aversion. Moreover, the possibility of losing or 

gaining social status can potentially explain the risk preferences described by Prospect 

Theory (Kahneman and Tversky, 1979). Some of the utility functions are discontinuous 

and have flat areas, which makes the use of Arrow-Pratt measure of absolute risk aversion 

impractical. To analyze risk profiles of such utility functions, I propose fractional risk 

aversion, a measure equal to the percentage of potential gambles an individual would reject. 

Section 2 ends with sample foraging models in which a single utility function is not the 

optimal way to select favorable gambles.  

In Section 3, I construct a mathematical model of behavior in a stochastic 

environment (MBSE) which generalizes concepts used in Section 2. It contains the main 

result of the paper: the Theorem proving that a single utility function can be used by an 

individual as the optimal way to make sequential decisions in a stationary environment. 

The Theorem also provides a way to calculate the value of utility function which must be 

equal to a positive affine transformation of the expected performance function. I use the 

Theorem in Proposition 1 and Proposition 2 to analytically verify the numerical results 

presented in Section 2. All proofs are in the Appendix.  

Section 2 and Section 3 focus mostly on technical aspects. The discussion of related 

literature, terminology, assumptions, and implications of the results are combined in 

Section 4. I start that section by explaining how MBSE relates to the literature on Markov 

decision processes. I than further discuss the distinction between utility and fitness as well 

as the assumption that the environment is stochastic. The discussion of the main result 

follows: it is optimal to use a single utility function in a stationary environment but it may 

not be optimal to do so in an environment that violates stationarity. This challenges a 
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common assumption that rational individuals use a single utility function over time. The 

Theorem also provides arguments that the theory that people (and other animals) behave 

as if they were maximizing expected utility is methodologically reducible. Finally, by 

linking value of utility function to the value of the performance function it suggests that 

utility functions may have particular units and can be in principle empirically measurable.  

Section 4 also discusses the models presented in Section 2. These models are 

developed in the spirit of optimal foraging theory and are consistent with a number of 

experimental studies. They predict typical attitudes to risk (traditional risk aversion and S-

shaped value function) as well as introduce new hypotheses. They explain why a rational 

individual would use a globally concave utility function and they suggest that individuals 

just below reference point may be more risk-loving than individuals far below it. In the 

summary, identified evolutionary reasons for risk aversion suggest that risk aversion may 

be an evolutionary mismatch. 

2. Example applications 

In this section I present a number of foraging models which are aimed at identifying 

evolutionary sources of risk preferences. The models are inspired by empirical research in 

humans and other animals. For a sample empirical analysis of the relationship between 

foraging, social status, and reproductive success in humans see Wiessner (2002). For a 

review of foraging experiments with animals see Real and Caraco (1986). The models 

allow me to derive various utility functions using numerical methods and to show that in 

some cases utility function used by an individual should change over time. Since some of 

the utility functions are discontinuous or flat, using Arrow-Pratt absolute risk aversion 

measure is impractical. To analyze risk profiles of such utility functions I use an ad-hoc 

measure I call fractional risk aversion.  

Consider an individual inhabiting a stochastic environment with discrete time and 

periods numbered 𝑡 = 1,2,3, …. In every period the individual consumes 𝑑𝑡 ~ Exp (
1

𝑐̅
) 

resources where 𝑐̅ = 0.3. Also, in every period the individual is provided with a foraging 

opportunity. The opportunity yields 𝑔𝑡 net resources with probability 𝑝𝑡 if it is successful 

or costs 𝑙𝑡 resources with probability 1 − 𝑝𝑡 if it is unsuccessful, where 𝑝𝑡 ~ U[0,1], and 



6 

 

𝑔𝑡, 𝑙𝑡 ~ Exp(1). The individual observes values of 𝑑𝑡, 𝑝𝑡, 𝑔𝑡, and 𝑙𝑡 and then chooses 

whether to accept or reject the foraging opportunity. The individual starts with 𝑥1 > 0 

resources. If she does not accept the foraging opportunity, then 𝑥𝑡+1 = 𝑥𝑡 − 𝑑𝑡. If she 

accepts the foraging opportunity, then 𝑥𝑡+1 = 𝑥𝑡 − 𝑑𝑡 + 𝑔𝑡 with probability 𝑝𝑡 or 𝑥𝑡+1 =

𝑥𝑡 − 𝑑𝑡 − 𝑙𝑡 with probability 1 − 𝑝𝑡. If, after foraging decision has been made, the amount 

of resources available to the individual is below zero, then the individual dies without 

leaving progeny and her performance is measured at 0. Every period, before foraging 

choice is made, there is a chance of 𝑝0 = 0.2 that the individual encounters a mate. If the 

individual encounters a mate before starving, she reproduces and her performance is 

measured at 1. All random variables and events are independently distributed.  

An individual is equipped with a utility function that allows her to make decisions 

about which foraging opportunities to accept and which to reject, according to the 

maximum expected utility principle. Two individuals with different utility functions will 

presumably have different expected performance. Natural selection ensures that only 

individuals with the highest expected performance (probability of finding a mate) survive. 

The goal is thus to find a utility function that maximizes the expected performance. In other 

words, the goal is to maximize fitness, where fitness is defined as the expected performance 

and depends on the adopted utility function. 

Let us call the above stochastic environment 𝐸1. For the ease of exposition, let us 

explicitly characterize the performance function 𝑓1(𝑥) = 𝟏(𝑥 ≥ 0), where 𝟏 is the 

indicator function. Let us also explicitly characterize probability of process termination 

which is Φ1(𝑥) = {
1 ⇔ 𝑥 < 0
𝑝0 ⇔ 𝑥 ≥ 0

 and embodies both possibilities of starving and finding 

a mate. Now, let us consider an alternative stochastic environment 𝐸2 which is exactly the 

same as 𝐸1 except that the individual can have a negative amount of resources without 

starving, that is Φ2(𝑥) = 𝑝0. An interpretation of 𝐸2 is that the individual lives in a group 

and the state variable 𝑥𝑡 indicates how much resources she has relatively to the group 

average (or some other reference point). A potential mate choses our individual only if her 

social status is high and she has more resources than average. Otherwise, the opportunity 

to procreate is forgone.   
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Env. Performance function Probability of termination 

𝐸1 𝑓1(𝑥) = 𝟏(𝑥 ≥ 0)  Φ1(𝑥) = {
1 ⇔ 𝑥 < 0
𝑝0 ⇔ 𝑥 ≥ 0

  

𝐸2 𝑓2(𝑥) = 𝟏(𝑥 ≥ 0)  Φ2(𝑥) = 𝑝0  

𝐸3 𝑓3(𝑥) = 𝑥𝟏(𝑥 ≥ 0)  Φ3(𝑥) = {
1 ⇔ 𝑥 < 0
𝑝0 ⇔ 𝑥 ≥ 0

  

𝐸4 𝑓4(𝑥) = 𝑥𝟏(𝑥 ≥ 0)  Φ4(𝑥) = 𝑝0  

𝐸5 𝑓5(𝑥) = {
0 ⇔ 𝑥 < 0

ln(𝑥 + 1) ⇔ 𝑥 ≥ 0
  Φ5(𝑥) = {

1 ⇔ 𝑥 < 0
𝑝0 ⇔ 𝑥 ≥ 0

  

𝐸6 𝑓6(𝑥) = {
0 ⇔ 𝑥 < 0

ln(𝑥 + 1) ⇔ 𝑥 ≥ 0
  
Φ6(𝑥) = 𝑝0  

𝐸7 𝑓7(𝑥) = 𝑥  Φ7(𝑥) = 𝑝0  

Table I. Characteristics of stochastic environments under consideration. 

Environment 𝐸3 is the same as 𝐸1 except that performance function is 𝑓3(𝑥) =

𝑥𝟏(𝑥 ≥ 0): the number of children depends linearly on the amount of resources individual 

was able to acquire. Environment 𝐸5 is the same as 𝐸1 except that performance function is 

𝑓5(𝑥) = {
0 ⇔ 𝑥 < 0

ln(𝑥 + 1) ⇔ 𝑥 ≥ 0
, to reflect diminishing returns to having more resources 

in terms of ability to procreate. For 𝑖 = 2, 4, 6 the environment 𝐸𝑖 is exactly the same as 

𝐸𝑖−1 except that in 𝐸𝑖 we have Φ𝑖(𝑥) = 𝑝0 (no possibility of starvation). Finally, the 

environment 𝐸7 has 𝑓7(𝑥) = 𝑥 and Φ7(𝑥) = 𝑝0. The basic characteristics of all 

environments are summarized in Table I. 

Furthermore, for each of the seven environments, consider four variants: 

I. 𝑑𝑡 ~ Exp (
1

𝑐̅
) and 𝑐̅ = 0.3, 𝑝0 = 0.2, 𝑔𝑡, 𝑙𝑡 ~ Exp(1), 

II. 𝑑𝑡 ~ Exp (
1

𝑐̅
) and 𝑐̅ = 0.4, 𝑝0 = 0.2, 𝑔𝑡, 𝑙𝑡 ~ Exp(1), 

III. 𝑑𝑡 ~ Exp (
1

𝑐̅
) and 𝑐̅ = 0.3, 𝑝0 = 0.15, 𝑔𝑡, 𝑙𝑡 ~ Exp(1), 

IV. 𝑑𝑡 ~ U[0,2c̅] and 𝑐̅ = 0.3, 𝑝0 = 0.2, 𝑔𝑡, 𝑙𝑡 ~ U[0,2]. 

These four variants are supposed to provide a rudimentary robustness analysis. The 

only justification for the parameters and probability distributions I use is that they are easy 

to analyze, both numerically and analytically. It is thus important to see whether the results 

change much when the parameters and the distributions change.  

For each of the 28 cases described above, I numerically look for an optimal utility 

function. Using Microsoft Visual C++ 2015, I implement the simultaneous perturbations 
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Figure 1. Numerical utility functions in the seven stochastic environments 𝐸1 − 𝐸7.  
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algorithm (Spall, 2003) and use a piecewise linear approximations of utility functions. In a 

nutshell, the algorithm takes a randomly generated utility function and simulates a life of 

an agent using this utility function in order to obtain her performance. Then, the algorithm 

tweaks the utility function in a random way and simulates individual’s life again to see how 

the tweak affects the performance. If the tweak is improving, it is kept, otherwise, an 

opposite tweak is implemented. Then, the algorithm moves to the next iteration and tries 

another tweak. These steps are repeated until convergence is likely. The results are 

presented in Figure 1. Notice that the optimal utility function for all variants of the 

environment 𝐸7 is linear. As the agents in this environment are supposed to maximize the 

expected amount of resources, risk neutrality is exactly what we expect. 

A number of utility functions are discontinuous. In environments 𝐸1, 𝐸3, and 𝐸5 the 

utility function equals zero for 𝑥 < 0 and jumps to a positive value at 𝑥 = 0. I attribute 

these discontinuities to the discontinuity of Φ: for small 𝜀 > 0 the difference between 𝑥 =

𝜀 and 𝑥 = −𝜀 is the difference between life and death. In the case of 𝐸1 and 𝐸2 the source 

of discontinuity in the utility function is the discontinuity of 𝑓: gambles that lend 

us just above zero are highly desirable in comparison to gambles that lend us just below 

zero, even if there is no starvation possible. 

The easiest way to investigate risk preferences for a given utility function is to 

visually inspect it for local concavities and convexities. This simple method allows us to 

identify three sources of risk preferences. The possibility of starvation (𝐸1) and the 

diminishing returns to having more resources (𝐸5 and 𝐸6) result in local concavity for 𝑥 ≥

0 and can be interpreted as sources of traditional risk aversion. The possibility of losing or 

gaining social status (𝐸2) results in S-shaped, reference-dependent utility function.  

Visually inspecting utility function for their local curvature disregards important 

features of these utility functions that may affect which gambles are rejected and which are 

accepted. Discontinuities and flat areas of a utility function are certain to affect risk 

aversion, at least in their neighborhood. The investigation of risk preferences embodied in 

such utility functions requires thus more careful analysis. In addition to having these 

pernicious features, environments 𝐸1 and 𝐸2 are especially interesting due to their 
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relationship with the literature. 𝐸1 resembles a typical model from optimal foraging theory 

and 𝐸2 seems to provide evolutionary reasons for the S-shaped value function from the 

Prospect Theory.  

The traditional Arrow-Pratt measure of absolute risk aversion 𝐴𝑅𝐴(𝑥) =

−𝑢′′(𝑥)/𝑢′(𝑥) is in this context impractical. First, it is undefined for flat areas of utility 

function. Second, it disregards points of discontinuity even though they surely affect which 

gambles are accepted. Finally, even an attempt to calculate it for strictly increasing and 

continuous parts of utility functions is plagued with difficulties. Since it is obtained using 

stochastic optimization, the estimated value of utility function �̂�(𝑥) equals the true value 

plus a random error: �̂�(𝑥) = 𝑢(𝑥) + 𝜀. Using first differences to calculate first-order 

derivatives is thus prone to large errors, which become even larger when the procedure is 

repeated to obtain second-order derivatives. Alternatively, one could approximate pieces 

of utility functions by fitting the data with some parametrized function and then calculate 

derivatives of that function. This approach however also turns out to be unreliable. To see 

why, consider any constant absolute risk aversion (CARA) utility function of the form 

𝑢(𝑥) = 𝑎 + 𝑏𝑒𝑐𝑥. Trying to approximate a piece of this function with a polynomial results 

in Arrow-Pratt absolute risk aversion being a rational function, which is guaranteed not to 

be constant.  

Instead of absolute risk aversion, I use an ad-hoc measure which I call fractional 

risk aversion (FRA), defined as a probability that a randomly drawn gamble is rejected in 

favor of the status quo. Such measure requires population of the gambles to be known in 

advance. This criterion is met by the environments 𝐸1 − 𝐸7 and the population of gambles 

is the same in a given variant of all of the environments. For the variant I of each 

environment we can use the following formula: 

𝐹𝑅𝐴(𝑥) = ∫ ∫ ∫
1

2
(1 + sgn(𝑢(𝑥) − 𝑝𝑢(𝑥 + 𝑔) − (1 − 𝑝)𝑢(𝑥 − 𝑙))) 𝑑𝑝

1

0

𝑑𝑙

𝑒𝑙

+∞

0

𝑑𝑔

𝑒𝑔
 

+∞

0

 

where sgn(∙) is a standard sign function and 𝑢(𝑥) is the utility function. Note that for all 

𝑥, 0 ≤ 𝐹𝑅𝐴(𝑥) ≤ 1. 𝐹𝑅𝐴(𝑥) = 0.5 for risk neutral and indifferent individuals (with a 
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linear and flat utility function respectively). Finally, FRA is constant if the utility function 

is CARA. 

Value of FRA depends directly on the value of a utility function. Unlike with ARA, 

with FRA it is practical to use a parametrized functional form and fit it with numerically 

obtained approximations of the utility function. I use exponential functions to fit utility 

function of both 𝐸1 and 𝐸2. The goodness of fit and additional experiments with 𝐸5 suggest 

the following conjecture: for the variant I, the optimal utility functions in 𝐸1 and 𝐸2 are 

piecewise of the functional form 𝑎 + 𝑏𝑒𝑐𝑥 and the utility function in 𝐸5 is piecewise of the 

functional form 𝑎 + 𝑏𝑒𝑐𝑥 + 𝑑𝑥. 

  
 

 

Figure 2. Fractional risk aversion (FRA) for the variant I of the environments 𝐸1 and 𝐸2.  
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Using fitted functional forms rather than numerical estimates smoothens the utility 

functions making the results less reliable on the precision of stochastic optimization 

methods. Moreover, it speeds up the Monte Carlo evaluation of integrals. The results are 

presented in Figure 2. In both cases FRA confirms results of the visual inspection. 

However, it also suggests that the risk aversion drops as we approach the point of 

discontinuity from the left. This is an important feature which is not immediately obvious 

after visually inspecting local curvature. I discuss this result further in Section 4. 

Finally, let us consider environments 𝐸8 and 𝐸9, similar to the environments 

considered so far. An individual living in 𝐸8 or 𝐸9 is still characterized only by the amount 

of resources she has at the beginning of period 𝑡: 𝑥𝑡 ∈ 𝑅. In every period, the individual 

consumes 𝑑𝑡  ~ U[0,1]. In every period, the individual is provided with a foraging 

opportunity characterized by a potential gain 𝑔𝑡, loss 𝑙𝑡, and a probability of success 𝑝𝑡, 

where 𝑔𝑡, 𝑙𝑡 ~ U[0,2] and 𝑝𝑡 ~ U[0,1]. The individual lives for 𝑇 periods. After 𝑇 periods, 

a mating season occurs. If the individual enters the mating period with sufficient amount 

of resources (𝑥𝑇+1 ≥ 𝐾, where 𝐾 > 0), then her performance equals 1 otherwise (𝑥𝑇+1 <

𝐾) it equals 0. Moreover, the individual living in 𝐸8 faces a possibility of starvation. Her 

performance equals 0 if 𝑥𝑡 < 0 for any 𝑡. In 𝐸9 there is no starvation possible.  

An agent living in such environments does not have a single utility function to guide 

her decisions. To see why, suppose that after today’s consumption the individual has 𝐾 +

1 unit of resources. If the individual is at the beginning of her lifespan, it makes sense for 

her to accept some foraging opportunities that can improve her situation. However, if the 

individual is in period 𝑇 − 1, she will surely survive to the mating season even if she does 

not engage in any foraging activity. In other words, if she refuses to accept any gambles, 

she has a probability 1 of success. Accepting any gambles reduces her expected 

performance. As a result, for a given amount of resources, certain gambles will be accepted 

in the initial periods but rejected towards the end.  

Therefore, not in all stochastic environments natural selection will automatically 

equip an individual with a single utility function. The construction of a utility functions in 
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the environments 𝐸1 − 𝐸7 rests on a proposition that a single utility function indeed yields 

optimal decisions in these environments. This proposition is proven in Section 3. 

3. Analytical results 

In this section I construct a general model of behavior in a stochastic environment 

(MBSE) and prove that under stationarity of the environment, a single utility function is 

the optimal decision policy. I also show how to calculate the value of such utility function 

based on expected performance. These results imply that using a single utility function is 

indeed optimal for environments 𝐸1 − 𝐸7. It also allows to analytically identify properties 

of some of the optimal utility functions.  

Consider an agent operating in a stochastic environment with discrete time 𝑡 =

1,2, …. Agent’s state in period 𝑡 is described by 𝑥𝑡 ∈ 𝑋, where 𝑋 is the state space. Let the 

sequence of states ℎ𝑇 = (𝑥1, 𝑥2, … , 𝑥𝑇) ∈ 𝑋
𝑇 be called agent’s life history up to period 𝑇. 

Denote 𝐻 = ⋃ 𝑋𝑇∞
𝑇=1  as a set of all potential life histories.  

At the beginning of each period 𝑇, the process (life of the agent) may get 

terminated. There exists a probability distribution 𝑞1(∙ |ℎ
𝑇) over the set {0,1}, where 1 

indicates process termination. Let random variable 𝜙𝑇 be a process termination indicator. 

Then, 𝑞1(𝜙𝑇 = 1|ℎ
𝑇) is the probability that the process gets terminated when life history 

ℎ𝑇 is reached and 𝑞1(𝜙𝑇 = 0|ℎ
𝑇) is the probability that the process continues. 

A prospect 𝑝 is a probability distribution over 𝑋. Let 𝑃 denote the set of all 

prospects that can occur. In every period, the agent has to choose from a choice set 𝑐𝑇 that 

contains a collection of prospects. Let 𝐶 ⊂ 2𝑃 be a set of all available choice sets. For every 

life history ℎ𝑇 ∈ 𝐻, there exists a probability distribution 𝑞2(∙ |ℎ
𝑇) over 𝐶. That is 

probability of obtaining particular choice set depends on the agent’s life history.  

The agent is equipped with a decision policy, which is a function 𝐷:𝐻 × 𝐶 → 2𝑃 

taking a life history and a choice set as an argument and returning a set of preferred 

prospects: 𝐷(ℎ𝑇 , 𝑐𝑇) ⊂ 𝑐𝑇. Moreover, there exists conditional probability distribution 

𝑞3(∙ |𝐷(ℎ
𝑇 , 𝑐𝑇)) over 𝑃 such that probability of selecting any of the prospects from 

𝐷(ℎ𝑇 , 𝑐𝑇) is equally likely. In other words, the agent determines which prospects from 𝑐𝑇 

are preferred, and then uses a fair coin toss (or similar procedure in case of more than two 
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preferred prospects) to determine which of these equally preferred prospects to eventually 

select. Let 𝑝𝑇 ∈ 𝐷(ℎ
𝑇 , 𝑐𝑇) denote the prospect selected in period 𝑇. 

The selected prospect 𝑝𝑇 obtains and the initial state of the period 𝑇 + 1 is 

determined: 𝑥𝑇+1 ~ 𝑝𝑇 (state 𝑥1 is determined according to given probability distribution 

𝑝0). 𝑞1, 𝑞2, 𝑞3, and 𝑝𝑇 can be combined into joint distribution. That is, given the decision 

policy 𝐷, there exists a probability distribution 𝑞4(⋅ |ℎ
𝑇) over {0,1} × 𝐶 × 𝑃 × 𝑋 which is 

based on 𝑞1, 𝑞2, 𝑞3, and 𝑝𝑇 and which jointly determines 𝜙𝑇, 𝑐𝑇, 𝑝𝑇, and 𝑥𝑇+1. {0,1} × 𝐶 ×

𝑃 × 𝑋 is a period-specific sample sub-space, and Ω = 𝑋 × ({0,1} × 𝐶 × 𝑃 × 𝑋)∞ is the 

entire sample space of a stochastic environment. An elementary event of this space is 

(

 
 
(

0
0
0
𝑥1

) ,(

𝜙1
𝑐1
𝑝1
𝑥2

) ,(

𝜙2
𝑐2
𝑝2
𝑥3

) ,…

)

 
 
= 𝜔 ∈ Ω 

The existence of the probability measure over Ω is generally not guaranteed and 

requires certain assumptions about the involved sets and functions, most importantly their 

measurability. For the sake of result’s generality, I will assume that measurability 

conditions are satisfied and that related questions need to be addressed separately. Thus, I 

assume that appropriate 𝜎-algebra over Ω and appropriate probability measure 𝜇𝐷 (which 

depends on the adopted decision rule 𝐷) exist and so the probability space is well defined.  

The performance function is 𝑓:𝐻 → 𝑅. Moreover, let a random variable 𝜙 =

min{𝑇: 𝜙𝑇 = 1} indicate the number of the period when process terminates. Then, random 

variable 𝑔 = 𝑓(ℎ𝜙) is the value of the performance function at the moment of process 

termination. Fitness 𝐹 is the expected value of the performance function given the adopted 

decision rule, that is 

𝐹(𝐷) = 𝐸𝐷𝑔 = ∫ 𝑔𝑑𝜇𝐷
Ω

= ∫ 𝑓(ℎ𝜙)𝑑𝜇𝐷
Ω

 

Assuming that 𝐹(𝐷) exists, an optimal policy is a decision policy 𝐷∗ such that 

𝐷∗ ∈ argmax
𝐷
𝐹(𝐷) 
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A utility function policy is a stationary decision policy for which there exist a 

function 𝑢: 𝑋 → 𝑅 (called a utility function) such that for any 𝑇 the decision policy returns 

prospect 𝑝 ∈ 𝑐𝑇 only if for all other prospects 𝑞 ∈ 𝑐𝑇 

∫ 𝑢(𝑥𝑇+1)𝑑𝑝(𝑥𝑇+1)
𝑋

≥ ∫ 𝑢(𝑥𝑇+1)𝑑𝑞(𝑥𝑇+1)
𝑋

 

where 𝑝(𝑥𝑇+1) indicates that 𝑥𝑇+1 is the variable of integration (I will keep using this 

somewhat sloppy notation for simplicity). Denote 𝑣(ℎ𝑇 , 𝐷) to be expected value of the 

performance function given the life history ℎ𝑇. That is 

𝑣(ℎ𝑇 , 𝐷) = 𝐸𝐷[𝑔|ℎ
𝑇] = ∫ 𝑔𝑑𝜇𝐷

ℎ𝑇

Ω
ℎ𝑇

 

Where Ωℎ𝑇 = {𝜔 ∈ Ω: (𝑥1(𝜔),… , 𝑥𝑇(𝜔)) = ℎ
𝑇} and 𝜇𝐷

ℎ𝑇 is the conditional 

probability measure on Ω induced by decision policy 𝐷 and normalized so that 𝜇𝐷
ℎ𝑇(Ωℎ𝑇) =

1. If 𝐹(𝐷) exists than 𝑣(ℎ𝑇 , 𝐷) exists almost surely (with probability 1). 

Lemma 1 (Bellman optimality principle). 𝐷∗ ∈ argmax
𝐷
𝑣(ℎ𝑇 , 𝐷) almost surely. 

Lemma 1 indicates that the optimal policy does not have to be well-behaved on a 

measure-zero set. This is because optimality is defined in terms of an integral (expected 

value). Also, Lemma 1 suggests conditions for the preference between prospects: a 

prospect that yields inferior expected value of the performance function cannot be chosen 

over a prospect that yields superior one. This is made explicit in Lemma 2. 

Lemma 2 (almost sure rationality). An optimal decision policy almost surely selects a 

prospect 𝑝 ∈ 𝑐𝑇 only if for any 𝑞 ∈ 𝑐𝑇 

𝐸𝑝𝑣(ℎ
𝑇+1, 𝐷∗) = ∫ 𝑣(ℎ𝑇+1, 𝐷∗)𝑑𝑝(𝑥𝑇+1)

𝑋

≥ ∫ 𝑣(ℎ𝑇+1, 𝐷∗)𝑑𝑞(𝑥𝑇+1)
𝑋

= 𝐸𝑞𝑣(ℎ
𝑇+1, 𝐷∗). 

Lemma 2 does not guarantee that once we reach history ℎ𝑇 the agent almost surely 

selects a prospect that maximizes expected performance function. In fact, after reaching 

particular history ℎ𝑇, the agent can do anything, unless probability of reaching ℎ𝑇 is 

positive (which is never the case if the underlying probability distributions are continuous). 
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Implication of Lemma 2 is thus weaker: with probability 1 a life history obtains such that 

in each period agent choses a prospect with the highest expected performance.  

Let us say that a stochastic environment is stationary if and only if probability of 

process termination and probability distribution over choice sets depend only on the current 

state, that is 𝑞1(∙ |ℎ
𝑇) = 𝑞1(∙ |𝑥𝑇) and 𝑞2(∙ |ℎ

𝑇) = 𝑞2(∙ |𝑥𝑇) where ℎ𝑇 = (𝑥1, … , 𝑥𝑇). 

Theorem (optimality of utility function policies). Assume that a stationary stochastic 

environment has performance function 𝑓(ℎ𝑇) = ∑ 𝑟(𝑥𝑡)
𝑇
𝑡=1 + 𝑅(𝑥𝑇). Then, as long as 

optimal policy 𝐷∗ exists, the expected value of the performance function is almost surely 

𝑣(ℎ𝑇 , 𝐷∗) = ∑ 𝑟(𝑥𝑡)
𝑇−1
𝑡=1 + �̃�(𝑥𝑇) for 𝑇 > 1 and 𝑣((𝑥1), 𝐷

∗) = �̃�(𝑥1) for 𝑇 = 1. The 

optimal policy is almost surely a utility function policy, with a utility function 𝑢(𝑥) = 𝑎 +

𝑏�̃�(𝑥) for any 𝑎 ∈ 𝑅 and 𝑏 > 0. 

 Let us call 𝑢0(𝑥) = �̃�(𝑥) the baseline utility function. Two useful corollaries follow 

immediately from the Theorem and are presented without formal proof.  

Corollary 1. Assume that a stationary stochastic environment has performance function 

𝑓(ℎ𝑇) = 𝑅(𝑥𝑇). Then, as long as optimal decision policy 𝐷∗ exists, almost surely 

𝑣(ℎ𝑇 , 𝐷∗) = �̃�(𝑥𝑇) and the optimal policy is a utility function policy. 

Corollary 2. Assume that a stationary stochastic environment has performance function 

𝑓(ℎ𝑇) = −𝑇. Then, as long as optimal decision policy 𝐷∗ exists, almost surely 

𝑣(ℎ𝑇 , 𝐷∗) = 1 − 𝑇 + �̃�(𝑥𝑇) and the optimal policy is a utility function policy. 

 Corollary 1 can be immediately applied to environments 𝐸1 − 𝐸7 to show that their 

optimal decision policy (if one exists) must be a utility function policy. Environments 𝐸8 

and 𝐸9 are not stationary, because probability of process termination depends on the 

number of the current period rather than the current state. Corollary 2 can be interpreted in 

the following way: if agent’s objective in a stationary stochastic environment is to achieve 

a goal as quickly as possible, then it is optimal to use a utility function policy. The value 

of baseline utility function equals negative of the expected number of periods before 

reaching the goal. In this case, achieving goal may be interpreted as reaching certain subset 

of states 𝐺 ⊂ 𝑋 for which probability of process termination is 1.  



17 

 

The Theorem and both corollaries assume that solution exists and then provide its 

properties. Proving that the solution exists needs to be done separately. Proposition 1 

proves existence by directly demonstrating the solution for the environment 𝐸7. Proposition 

2 does not prove existence but proves some properties of the optimal utility function in the 

environment 𝐸2. The purpose of these two propositions is to show how to apply the 

Theorem and to boost credibility of numerical results presented in section 2.  

Proposition 1. Let 𝑋 = 𝑅, 𝑓(ℎ𝑇) = 𝑥𝑇, Φ(ℎ𝑇) = 𝑝0 ∈ (0,1), and in every period 𝑐𝑡 

contains two elements: (1) 𝑥𝑡 − 𝑑𝑡 with probability 1 and (2) 𝑥𝑡 − 𝑑𝑡 + 𝑔𝑡 with probability 

𝑝𝑡 and 𝑥𝑡 − 𝑑𝑡 − 𝑙𝑡 with probability 1 − 𝑝𝑡.  

a) If 𝑑𝑡 ~ U[0,2𝑐̅], 𝑝𝑡 ~ U[0,1], and 𝑙𝑡, 𝑔𝑡 ~ U[0,2] are independently distributed, 

then the baseline utility function 𝑢0(𝑥) = (
1

6
(ln(16) − 1) − 𝑐̅)

1−𝑝0

𝑝0
+ 𝑥 is the 

optimal decision policy. 

b) If 𝑑𝑡 ~ Exp (
1

𝑐̅
), 𝑝𝑡 ~ U[0,1], and 𝑙𝑡, 𝑔𝑡 ~ Exp(1) are independently distributed, 

then the baseline utility function 𝑢0(𝑥) = (
1

3
− 𝑐̅)

1−𝑝0

𝑝0
+ 𝑥 is the optimal decision 

policy. 

Variant Slope Intercept 1 − 𝑅2 
 1 − �̂� St.Dev. 𝑏0 𝑏0 − �̂� St.Dev. 

I 4.016E-5 5.712E-5 2/15 4.755E-3 9.934E-5 7.798E-7 

II 7.918E-5 4.553E-5 -4/15 2.898E-3 7.919E-5 4.955E-7 

III -2.504E-5 5.750E-5 17/90 3.346E-3 1.000E-4 7.902E-7 

IV -1.511E-4 4.341E-5 -1.827E-2 3.415E-3 7.551E-5 4.503E-7 

Table II. Estimation of the linear utility functions in the four variants of 𝐸7. �̂� and �̂� are 

the fitted values. Corresponding values calculated analytically are 1 and 𝑏0 respectively. 

To avoid superfluous 0s and 9s I report 1 − �̂�, 𝑏0 − �̂�, and 1 − 𝑅2 instead of �̂�, �̂�, and 𝑅2. 

Scientific notation is used for the same reason. Each estimation is based on 241 

observations.  

To see whether numerical results in Section 2 agree with the theory I use OLS to 

fit 𝑦 = 𝑎𝑥 + 𝑏 for each of the four variants of 𝐸7. The results are presented in Table II. The 

numerically calculated utility functions are very close to 45-degree lines. Their intercepts 

are consistently underestimated. Although the magnitude of the differences between 
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theoretical and estimated utility values is relatively small (around 0.1% for 𝑥 = 3), the 

difference is in all cases statistically significant with t-statistic exceeding 30. I suspect that 

the source of this bias is in weak convergence properties of the stochastic optimization 

algorithm. Hence, similar bias is to be expected for other utility functions in Figure 1. 

Proposition 2. Let 𝑋 = 𝑅, Φ(ℎ𝑇) = 𝑝0 ∈ (0,1), and in every period 𝑐𝑡 contains two 

elements: (1) 𝑥𝑡 − 𝑑𝑡 with probability 1 and (2) 𝑥𝑡 − 𝑑𝑡 + 𝑔𝑡 with probability 𝑝𝑡 and 𝑥𝑡 −

𝑑𝑡 − 𝑙𝑡 with probability 1 − 𝑝𝑡 where 𝑑𝑡  ~ Exp (
1

𝑐̅
), 𝑝𝑡 ~ U[0,1], and 𝑙𝑡, 𝑔𝑡 ~ Exp(1) are 

independently distributed. Also, let 𝑓(ℎ𝑇) = 𝟏(𝑥𝑇 ≥ 0). Then, assuming the solution 

exists, the optimal decision policy can be almost surely described by a baseline utility 

function 𝑢0(𝑥) satisfying the following conditions: 

a) lim
𝑥→−∞

𝑢0(𝑥) = 0, lim
𝑥→+∞

𝑢0(𝑥) = 1, and 0 < 𝑢0(𝑥) < 1. 

b) 𝑢0(𝑥) is strictly increasing. 

c) 𝑢0(𝑥) is continuous everywhere except for 𝑥 = 0 and 𝑢0(0) − lim
𝑥→0−

𝑢0(𝑥) = 𝑝0. 

Unlike Proposition 1, Proposition 2 does not allow us to directly test whether results 

of the numerical procedure are correct (except for the size of the gap at 𝑥 = 0). Instead, it 

allows us to visually inspect the estimated utility functions and validate their general 

properties. Furthermore, Proposition 2 does not prove the existence of the optimal policy. 

Existence of optimal policies for environments 𝐸1 − 𝐸6 is a conjecture.  

4. Discussion 

 I start discussion with a purely mathematical aspect. MBSE can be converted into 

a Markov decision process (MDP). The Theorem solves a problem typical for the MDP 

literature: it proves that optimal decision policy is stationary and shows a way to find it 

numerically. In addition to applications specified in Section 2, the Theorem can be applied 

to a class of traditional MDP problems. 

 The second part of discussion is concerned with interpretation. Fitness and utility 

are two different concepts even though an agent seems to maximize both of them 

simultaneously. Also, the stochasticity of environment should be interpreted in terms of 
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subjective probabilities. Validity of MBSE depends on whether subjective probabilities are 

a good way to model incomplete information. 

 The third part deals with the main result of this article and its implications. MBSE 

challenges a popular normative assumption that individuals use a single utility function. 

Moreover, it shows how maximization of expected utility is methodologically reducible to 

maximization of fitness and that utility may be empirically measurable and may have well 

defined units.  

 Finally, I discuss the models presented in Section 2. MBSE provides a single 

framework for various optimal foraging models and evolutionary analysis of risk aversion. 

The models allow to identify three sources of human risk preferences: possibility of death, 

diminishing returns to having more resources, and possibility of gaining or losing social 

status. They also rationalize globally concave utility functions, predict higher risk-loving 

for individuals just below reference point than those far below it, and suggest that risk 

aversion may be an evolutionary mismatch.  

4.1. Relation to Markov decision processes 

MBSE can be reformulated as a total-reward MDP. Original state space can be 

combined with the space of choice sets and a terminal state in order to form an MDP-like 

state space. Each element of this new state space is then associated with an original state 

and a single choice set. Action space can be built out of all subsets of 𝑃. After agent selects 

an action, the transition probability into a subsequent state depends on: (1) original 

transition probabilities, (2) probability of process termination (transition into the terminal 

state), and (3) probability distribution over choice sets (to determine the choice set 

component of the subsequent MDP-like state). Upon reaching the terminal state, there is a 

final reward (equal to the agent’s performance) and further transition probabilities maintain 

the process in the terminal state. 

The Theorem can be crudely restated in the language of MDPs as: “for a certain 

stationary process, the optimal policy is stationary and can be expressed in the form of a 

utility function.” The literature on MDPs has a lot of results concerning existence of 

optimal stationary policies and ways to calculate them. Stationary policies are not in 
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general optimal for finite-horizon models (cf. 𝐸8 and 𝐸9). Infinite-horizon models are most 

extensively studied for finite or countable state and action spaces. Infinite-horizon models 

can be generally divided into three groups: discounted-reward, total-reward, and average-

reward problems. We are interested in infinite-horizon, total-reward, uncountable state 

MDPs. The analysis thereof has been focused mostly on two further categories: positive 

models and negative models, both of which impose restrictions on rewards. These 

restrictions are in general not satisfied by our stochastic environments (e.g. rewards in 𝐸7 

are unbounded). The remaining literature consists of several papers concerned mostly with 

𝜀-optimality of stationary strategies. There does not seem to exist a result that could be 

directly applied in place of the Theorem. Feinberg and Schwartz (2002) and Puterman 

(2005) provide in-depth introductions to MDPs and extensive literature reviews. 

The Theorem can potentially have other MDP-related applications in addition to 

those presented in Section 2. As an example, consider a simple 4x3 environment with a 

sequential decision problem described by Russell and Norvig (2010, p. 646). In this 

environment, an agent is located on a 4 by 3 lattice. In every period, the agent has to choose 

the direction of movement. However, the actual direction of movement can differ from the 

chosen one. The actual direction of movement is what the agent chose with probability 0.8 

and can deviate by 90 degrees clockwise or counterclockwise with probability 0.1 each. If 

the actual direction of movement leads the agent out of the lattice or onto an obstacle, no 

movement occurs. Otherwise, agent moves to the adjacent lattice node. In addition to an 

obstacle, the lattice contains two goals. Upon reaching any of them, the process terminates. 

One of the goals yields a reward of +1 and the other yields a reward of -1. Moreover, every 

period subtracts 0.04 from the final reward. The objective is to find a decision policy that 

maximizes the expected reward. This simple 4x3 environment satisfies the conditions of 

the Theorem. It immediately follows that the optimal decision policy is stationary (if it 

exists) and is in the form of a utility function, a fact otherwise well known. 

Finally, the Theorem may improve algorithms looking for numerical 

approximations of optimal policies for problems with uncountable state spaces. According 

to the Theorem, the value of the utility function for a given state can be calculated based 
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on the expected performance when starting in this state. This implies that 𝑢0(𝑥) = 0 for 

𝑥 < 0 in 𝐸1, 𝐸3, and 𝐸5. It also implies that there may be no need to look for the entire 

utility function simultaneously. In fact, for the problems of Section 2, instead of 

approximating the entire utility function using high-density piecewise linear functions, I 

use low-density piecewise linear functions to find the maximum expected performance for 

a particular state. Then, I repeat this process for interesting states. The pictures in Figure 1 

would be much coarser (with just a few clearly visible linear pieces) if I did not apply the 

Theorem while writing the optimization algorithm. It is also worth noting that after using 

this procedure, the estimated utility function can be further improved by policy iterations. 

For example, a single policy iteration would entirely remove the bias (described in Section 

3) with which I estimate the utility function for the environment 𝐸7. 

4.2. Interpretation of utility, fitness, and stochasticity 

 A contemporary formal notion of utility function most often follows Von Neumann 

and Morgenstern (1964). According to this view, a utility function can be derived from 

preferences and can be used to efficiently determine which states of the world or gambles 

over the states of the world would be selected by a rational individual. It is often argued 

(or assumed) that agents have such a utility function and that it helps them make a decision 

whenever they face a choice between prospects. For examples see Friedman and Savage 

(1948) or Russel and Norvig (2010, p. 651). Meanwhile, the same authors often define 

utility as a function of policy. The utility function no longer helps to compare states of the 

world. Instead, it helps to compare decision policies in the sequential decision-making 

processes. This can be seen for example in Dubins and Savage (1965, p.25) or Russel and 

Norvig (2010, p. 647). Numerous other authors follow suit and some authors (e.g. Real and 

Caraco, 1986, Cooper, 1987, De Freja, 2009, or Kenrick et al., 2009) explicitly equate 

fitness with utility.  

MBSE shows how this “let us call a utility whatever is being currently maximized” 

approach can lead to confusion. Following this approach, MBSE has two distinct objects 

that should be called a utility function. One is the way of making single decisions – this is 

what I call a utility function in this article. The other is the assessment of a decision policy 
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– something that is also often called fitness. Hence, following this terminology, not only 

we have a single term to describe two distinct objects but we also have two terms to 

describe the same object. For that reasons, I decided to use term utility function only in its 

traditional, non-sequential meaning, when the argument is a state of the world or a 

consumption bundle. Fitness on the other hand is a function of chosen utility function(s) 

defined as expected level of overall lifetime success. Rayo and Becker (2007) as well as 

Robson and Samuelson (2011) seem to follow similar distinction.  

The following list summarizes differences between fitness and utility: 

1) Fitness is a function of decision policy. Utility is a function of world state. 

2) Expected Utility Theory of von Neumann and Morgenstern (1964) does not apply 

to fitness, since notion of probability distributions over decision policies is hardly 

ever an issue. On the other hand, the notion of probability distributions over world 

states is often very useful.  

3) Fitness is maximized by the agent’s designer (or the principal): natural selection in 

case of living organisms or a human engineer in case of artificial agents. Utility is 

maximized by the agent. 

4) Since it is defined as expected value, fitness can be empirically measured only for 

a population. If utility can be empirically measured, then the measurement involves 

a single individual. 

There is a link between the two quantities which can be explained with introduction 

of the third term: performance. This term is well established in the theory of artificial 

intelligence (see Russel and Norvig, 2010, p. 37). Performance is the quantity that can be 

empirically measured after observing agent’s behavior. In case of an animal, it may be a 

number of descendants and in case of an artificial agent it can be the quantity or quality of 

agent’s output.  

By definition, rational agent maximizes her expected performance. Expected 

performance of an agent can be empirically estimated at any stage of agent’s operation, 

after observing actual performance of identical agents under similar circumstances. Fitness 

is the a priori expected performance which takes into account all possible circumstances 
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that can occur during agent’s operation. Finally, utility informs the agent which states 

should she prefer in order to maximize her expected performance. Utility can be equal to 

expected performance, but it can also be its positive affine transformation so that there is a 

single utility function even though expected performance for a given state varies from 

period to period (as in Corollary 2). 

Let us now discuss stochasticity of the environment. MBSE seemingly assumes that 

the environment works according to laws of probability and the agent uses a decision-

making mechanism compatible with these laws. In reality, aside from some quantum 

effects, the physical world can be well approximated as deterministic. An agent with 

precise information on initial conditions and cognitive ability to model physical processes 

sufficiently quickly should be able to predict the outcome of a coin toss with very high 

degree of certainty (Strzałko et al., 2008). In fact, the perceived randomness of a coin toss 

comes mainly from cognitive ineptitude of humans. The same applies to the vast majority 

of other apparently random events.  

The stochasticity of environment comes not from its intrinsic randomness but from 

the incomplete information an agent has about the environment. That is, the underlying 

assumption is not that the environment is random, but that an agent uses subjective 

probability to model her incomplete information about the environment and that she does 

it accurately. This assumption may be correct only as long as the optimal way to represent 

uncertainty in an evolved or designed agent are indeed subjective probabilities. Russell and 

Norvig (2010, chapters 13 and 14) provide a brief but informative overview of the literature 

on the use of subjective probabilities and alternative theories.  

4.3. Main results 

MBSE aims at being as general as possible. In every period, individual is provided 

with a choice set containing probability distributions over the state space. State space is 

arbitrary: it can be a finite set, a countable set, or an uncountable set like 𝑅𝑛. Choice sets 

can also be finite, countable or uncountable. A state can reflect variables both observable 

and unobservable to the agent. Available choice sets and performance of the agent depend 

on her entire history in an arbitrary way. This setup allows for a high degree of flexibility 
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and permits construction of detailed models for a large class of problems actual agents may 

face.  

 Any rational agent, by definition, maximizes her expected performance (cf. Lemma 

2). A rational agent uses a single utility function if the environment she was designed for 

satisfies certain conditions. Some of these conditions are identified by the Theorem: the 

environment must be stationary. Since these are only sufficient condition, there may still 

be other circumstances under which single utility function is optimal. For example, in a 

finite-horizon environment like 𝐸9, a single utility function is optimal if the objective is to 

maximize the expected amount of resources (𝑥𝑇+1).  

 Violating stationarity can lead to a situation when a single utility function is not an 

optimal decision policy. Potential causes for a non-stationary optimal policy include 

performance function and probability of process termination changing over time (the latter 

exemplified by 𝐸8 and 𝐸9). Stationarity is a restrictive condition and such violations are 

likely to occur in sophisticated natural environments. This suggests the following non-

stationarity conjecture: human and animal utility functions change over time. 

The idea that agents have a single utility function only under special circumstances 

has a number of implications. Insofar as natural selection is efficient in creating rational 

agents, MBSE can be treated as positive model of behavior that offers testable predictions. 

Humans and other animals should have time-invariant preferences in stationary 

environments. But, more interestingly, according to the non-stationarity conjecture, 

humans and animals should have variable preferences in non-stationary environments. 

Examples of such environments are easy to find. For a human, consider a person whose 

objective is not to go into red between two paychecks. For an animal, consider a small bird 

or mammal that needs to accumulate enough calories during a day to survive the 

subsequent winter night. These situations can be modeled by 𝐸8. In both of them, risk 

preference of a rational agent changes with time. 

Many normative models of behavior assume that individuals use certain utility 

function to make decisions. Examples from economics include a typical intertemporal 

consumption problem, max
𝑐
∑ 𝛽𝑡𝑢(𝑐𝑡)
∞
𝑡=0 , and attempts to explain human attitudes to risk 
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with a single utility function of money or wealth (e.g. Friedman and Savage, 1948). MBSE 

implies that this assumption cannot be unconditionally maintained. Using a single utility 

function is in general not normatively correct and thus requires justification. One potential 

justification, provided by the Theorem, is that the behavior under consideration occurs in 

a stationary environment. The optimal policy can be also approximated by a single utility 

function if such approximation does not significantly affect results.  

A potential strength of MBSE relative to traditional normative and positive models 

of behavior is its immediate methodological reducibility. Consistent methodological 

reductionism leads to a conclusion that all observable phenomena can be ultimately 

explained by the fundamental forces of physics. Behavior of humans and other animals is 

no exception. Anderson (1972) remarks that “the workings of our minds and bodies, and 

of all the animate or inanimate matter of which we have any detailed knowledge, are 

assumed to be controlled by the same set of fundamental laws, which except under certain 

extreme conditions we feel we know pretty well.” Anderson presents a hierarchy of 

sciences in which, roughly speaking, physics is the foundation of chemistry, chemistry is 

the foundation of biology, biology is the foundation of psychology, and psychology is the 

foundation of social sciences. 

Methodological reducibility ensures that the assumptions used to develop a theory 

have robust foundations. If an explanation of a phenomenon cannot be ultimately reduced 

to the fundamental forces of physics, then it likely contains unjustifiable assumptions and 

the scientific status of such explanation is dubious. This is especially important in case of 

theories about human behavior, which too often hinge on intuitions and preconceptions 

about human nature (examples abound in social sciences and philosophy). Thus, the 

scientific status of the theory that people act as if they were maximizing their expected 

utility depends on whether such theory can be derived from basic laws of physics.  

In this research project, I show how maximization of expected utility may be 

explained by the tendency of natural selection to maximize fitness. This provides a 

reductionist link between one of the most prominent theories used in economics and one 

of the most prominent theories in theoretical biology (for a reductionist link between fitness 
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optimization and even more basic laws see Grafen, 2002). This research project is not the 

first attempt at providing such a link, some of the previous work include Karni and 

Schmeidler (1986), Cooper (1987), Robson (1996), and Robson (2001b). I would like to 

extend this link by supposing the following conjecture: all optimizing behavior people 

engage in can be ultimately derived from the optimizing nature of natural selection.  

Another interesting implication of MBSE comes from that fact that the Theorem 

identifies the value of baseline utility function. The prevailing viewpoint among welfare 

economists is that utility cannot be measured and interpersonal comparisons of utility are 

impossible. The two main reasons behind this stance is, first, that a utility function as a 

decision-making mechanism under uncertainty can be uniquely described only up to a 

positive affine transformation and, second, that even if the value of a utility functions can 

be uniquely determined, it is not known a priori how to weight the utility of one person 

against the utility of another. As Arrow (1963) puts it: “It requires a definite value 

judgement not derivable from individual sensations to make the utilities of different 

individuals dimensionally compatible and still a further value judgement to aggregate them 

according to any particular mathematical formula.” 

MBSE allows us to look at the first of the arguments against cardinal utility from a 

new angle. Consider a population of individuals living in the stochastic environment 𝐸1 

described in Section 2. An astute observer should quickly realize that performance of an 

individual depends on her ability to procreate before she starves. Such an observer would 

soon notice that, on average, 77% of individuals having one unit of resources procreate and 

that 91% of individuals having two units of resources procreate. An individual having one 

unit of food is thus clearly worse off than an individual who has two units of food. Corollary 

1 suggests that the baseline utility equals probability of survival. The value of baseline 

utility is thus in this case empirically measurable, has precise interpretation, and allows for 

meaningful comparisons across individuals.  

On the other hand, the baseline utility function obtained in an environment 

satisfying premises of Corollary 2 does not allow for such comparisons. An individual who 

has been working on her task for 10 periods is clearly worse off than a similar individual 
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who has been working for only 5 periods, even if the expected remaining time (i.e. the 

value of the baseline utility function) is the same for both individuals. As a result, the value 

of utility function does not seem to be appropriate for comparisons across individuals. 

However, there exists another potentially more suitable variable: expected 

performance. For the individuals inhabiting the same environment, expected performance 

can be, in principle, estimated with empirical data and has the same interpretation and the 

same units for all individuals. In special cases, like those described by Corollary 1, 

expected performance equals baseline utility.   

Measurement of utility or expected performance may prove to be hard in practice 

and is related to the very complicated questions of what contributes to and what reduces 

fitness. There are also other difficulties with using expected performance to identify 

individual welfare. One such difficulty is that humans evolved in an environment quite 

different to the one present today. Let us call the pre-industrial environment 𝐸0 and the 

post-industrial environment 𝐸+. The two environments differ both in their state spaces and 

in available choice sets. A decision policy that was created to maximize fitness in 𝐸0 can 

be different than a decision policy that would have maximized fitness in 𝐸+. This is why 

the people of today often make choices that in obvious way hamper their reproductive 

success, for example by accepting risk of smoking or obesity or giving up reproduction for 

career reasons – a phenomenon called evolutionary mismatch (Robson and Samuelson, 

2011). As a result, even if practically measurable, the value of performance function of an 

individual may not be well correlated with the fulfilment of her revealed preferences. 

Finally, the problem of aggregation of utilities or expected performances remains 

untouched by this analysis. It is easy to imagine that in a multi-agent system, maximizing 

the sum of expected performances of agents would tautologically maximize the expected 

performance of the entire system. As long as the definition of biological fitness is “ability 

to propagate own genes,” application of such procedure to humans would result in 

maximizing overall propagation of human genome in the Universe. Whether this is the 

desired outcome I dare not to speculate. 

4.4. Example foraging models  
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Optimal foraging theory is concerned with decisions animals make while searching 

for food. An important part of this theory is concerned with decisions under risk (see 

Kacelnik and Bateson, 1996, for a literature review). Real and Caraco (1986) review a 

series of experiments in which animals have to choose between steady sources of food in 

which one visit yields constant return and sources of food in which return is a random 

variable with the expected value equal to or exceeding that of the steady supply. The 

experiments were done using bees, wasps, various species of birds, shrews, and rats. All 

animals exhibited risk aversion in normal conditions. Experiments with birds and shrews 

also indicated that subjects were risk-loving if they were headed towards starvation (or 

were below threshold required to achieve other important biological goal like seasonal 

migration).  

 The environments 𝐸1 − 𝐸9 are explicitly optimal foraging models. 𝐸1 can be used 

to explain the behavior of birds and shrews summarized by Real and Caraco (1986). Small 

size of these animals indicates real possibility of starvation if they fail to acquire any 

resources in several subsequent foraging endeavors (the idea that maximization of 

probability of survival results in animal risk aversion was suggested by Caraco, 1980). The 

solution to 𝐸1 is consistent with empirical observations: such animals should be risk-averse 

in general but risk-loving if their energy balance goes below zero. Similarly, 𝐸2 can be 

reinterpreted to reflect the situation of migratory birds. In this interpretation, state of the 

agent is the animal’s weight relative to the weight needed for migration. The performance 

function is zero if migration does not occur and one if it does occur. Therefore, the animal 

is risk-loving until its weight crosses the threshold necessary for migration – then it 

becomes risk-averse, another prediction confirmed by empirical evidence.  

 Although foraging efforts seem to be far removed from the reality of modern human 

life, the human decision mechanism responsible for accumulating resources likely evolved 

in conditions when optimal foraging was critical for survival. Foraging models may be thus 

a good guide in an effort to find origins of human preferences. Based on this idea, MBSE 

provides a single framework for deriving various commonly discussed utility functions of 

money and identifying potential sources of risk preferences. Simple risk aversion may be 
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led by the possibility of losing resources necessary for survival (𝐸1) or by diminishing 

returns to having more resources in terms of expected performance (𝐸5 and 𝐸6). S-shaped 

risk preferences can be explained by possibility of losing social status by an individual 

above the reference point and willingness to accept risk to gain social status if the 

individuals is below it (𝐸2). 

All these results have been already discussed in the literature. Borch (1966) 

investigates a simple stochastic environment in which optimal utility function of an agent 

is concave due to possibility of death. Borch interprets the agent to be a firm, whose 

bankruptcy is here equivalent to death, and the performance measure is the total discounted 

amount of dividend paid. The relationship between concavity of performance function and 

concavity of utility function has been considered by Robson (1996). Rubin and Paul (1979) 

explain how competition for status and sexual selection could produce risk seeking in 

young and risk aversion in older males. Rayo and Becker (2007) show how individuals 

with limited perception can evolve an S-shaped, reference-dependent value function. 

Robson (2001a) provides a literature review of evolutionary accounts of risk aversion. 

More recent literature review, but slightly less focused on theoretical models was written 

by Collins et al. (2016). 

The analysis carried out in Section 2 not only demonstrates how to apply the 

Theorem in order to derive various evolutionary results within a single framework, but also 

has interesting implications on its own. First, environments 𝐸1 and 𝐸2 show why a rational 

individual would use a globally concave utility function, even though such functions are 

sometimes thought to have absurd level of risk aversion for large gambles (Rabin, 2000). 

For example, a sensible person may want reject a bet which yields -$20,000 with 

probability 50% or $1 billion with probability 50%, if the -$20,000 results in significant 

permanent reduction in her performance (bankruptcy, homelessness, permanent loss of 

social status, loss of a mating partner, loss of custody of children, early death due to 

inadequate health care, etc.). 

Second, analysis of risk profile generated by environment 𝐸2 suggests that 

individuals just below reference point are more risk loving than individuals far below it. 
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This result is a direct consequence of discontinuity in the utility function: sharp increase 

induces individuals to accept gambles that can land them on the other side of the threshold 

despite their low expected value. This constitutes a significant empirically verifiable 

departure from traditional Prospect Theory, which assumes that value function is 

continuous at the reference point (Kahneman and Tversky, 1979).  

Finally, collecting all evolutionary reasons for human risk preferences allows to 

reevaluate them as “deeply rational.” While regular rationality means simply acting 

according to one’s consistent preferences, deep rationality refers to preferences that serve 

a higher purpose – maximization of fitness. In the language of MBSE, decisions which are 

deeply rational are the decisions that maximize expected performance. 

Kenrick et al. (2009) present risk aversion as one of the candidates for deeply 

rational preferences. To the contrary, I would like to consider a conjecture that the level of 

risk aversion in modern humans is an evolutionary mismatch (for more potential 

economics-related evolutionary mismatches see Rubin, 1982). Typical evolutionary 

explanations of risk aversion revolve around features of the environment that are no longer 

present in the modern society. Social safety nets make sure that individuals do not starve 

in absence of resources. Availability of credit allows individuals to temporarily go into 

negative equity. Fertility rates are often negatively correlated with the resourcefulness of 

the household members and their social status. On the other hand, excessive risk aversion 

can potentially decrease the amount of investment undertaken by individuals, not only 

contradicting their own stated preferences for wealth but also hampering economic growth 

and welfare of the entire society. Therefore, if this conjecture is true, it is more appropriate 

to call human risk aversion “deeply irrational.”  

Appendix 

Proof of Lemma 1. If, in every period, probability that 𝐷∗ ∈ argmax
𝐷
𝑣(ℎ𝑇 , 𝐷) is one, then 

the proof is over. Assume otherwise: there exists a period 𝑇 in which 𝜇𝐷∗ ({𝜔 ∈ Ω:𝐷
∗ ∉

argmax
𝐷
𝑣(ℎ𝑇 , 𝐷)}) > 0. Let us denote the first such a period as 𝑇0. 
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𝜇𝐷∗ ({𝜔 ∈ Ω:𝐷
∗ ∉ argmax

𝐷
𝑣(ℎ𝑇0 , 𝐷)}) > 0 implies that there exists a set of 𝑇0-

long life histories 𝐻0 ⊂ 𝐻 such that ∀ℎ𝑇0 ∈ 𝐻0, 𝐷
∗ ∉ argmax

𝐷
𝑣(ℎ𝑇0 , 𝐷) and 𝜇𝐷∗({𝜔 ∈

Ω: ℎ𝑇0 ∈ 𝐻0}) > 0. We can construct a decision rule 𝐷′ that improves on 𝐷∗ so that ∀ℎ𝑇0 ∈

𝐻0, 𝑣(ℎ
𝑇0 , 𝐷′) = 𝑣(ℎ𝑇0 , 𝐷∗) + 𝜀(ℎ𝑇0) where 𝜀(ℎ𝑇0) > 0, but 𝐷′(ℎ𝑇 , 𝑐𝑇) = 𝐷

∗(ℎ𝑇 , 𝑐𝑇) for 

those life histories that are not in 𝐻0. The measures 𝜇𝐷′ and 𝜇𝐷∗ are equal for all subsets of 

Ω for which ℎ𝑇0 ∉ 𝐻0 as well as for subsets of Ω for which ℎ𝑇0 ∈ 𝐻0 but 𝑥𝑡 for 𝑡 > 𝑇0 are 

not specified – it is because these histories were reached using only those parts of policies 

𝐷′ and 𝐷∗ that coincide. Denote Ω0 = {𝜔 ∈ Ω: ℎ
𝑇0 ∈ 𝐻0}.  

𝐹(𝐷′) − 𝐹(𝐷∗) = ∫ 𝑔𝑑𝜇𝐷′

Ω

− ∫ 𝑔𝑑𝜇𝐷∗

Ω

= ∫ 𝑔𝑑(𝜇𝐷′ − 𝜇𝐷∗)

Ω\Ω0

+ ∫ 𝑔𝑑𝜇𝐷′

Ω0

− ∫ 𝑔𝑑𝜇𝐷∗

Ω0

 

Since 𝜇𝐷′ = 𝜇𝐷∗ on Ω\Ω0 we can eliminate the first integral. We can also separate 

variables in the remaining two integrals. Let 𝜇𝐷(𝐻
′) = 𝜇𝐷({𝜔 ∈ Ω: ℎ

𝑇 ∈ 𝐻′}) for some 

𝐻′ ⊂ 𝐻0. Then 

𝐹(𝐷′) − 𝐹(𝐷∗) = ∫ ( ∫ 𝑔𝑑𝜇𝐷′
ℎ𝑇0

Ω
ℎ𝑇0

)𝑑𝜇𝐷′

𝐻0

− ∫ ( ∫ 𝑔𝑑𝜇𝐷∗
ℎ𝑇0

Ω
ℎ𝑇0

)𝑑𝜇𝐷∗

𝐻0

= ∫ 𝑣(ℎ𝑇0 , 𝐷′)𝑑𝜇𝐷′

𝐻0

− ∫ 𝑣(ℎ𝑇0 , 𝐷∗)𝑑𝜇𝐷∗

𝐻0

 

 But for 𝐻′ ⊂ 𝐻0 we have 𝜇𝐷∗({𝜔 ∈ Ω: ℎ
𝑇 ∈ 𝐻′}) = 𝜇𝐷′({𝜔 ∈ Ω: ℎ

𝑇 ∈ 𝐻′}) so 

𝐹(𝐷′) − 𝐹(𝐷∗) = ∫(𝑣(ℎ𝑇0 , 𝐷′) − 𝑣(ℎ𝑇0 , 𝐷∗))𝑑𝜇𝐷∗

𝐻0

= ∫ 𝜀(ℎ𝑇0)𝑑𝜇𝐷∗

𝐻0

> 0 

As a result, 𝐹(𝐷′) − 𝐹(𝐷∗) can be simplified down to an integral of a positive 

function over a positive-measure set, and so 𝐹(𝐷′) − 𝐹(𝐷∗) > 0 which contradicts that 𝐷∗ 

is optimal. ∎ 

Proof of Lemma 2. If, in every period, probability that ∫ 𝑣(ℎ𝑇+1, 𝐷∗)𝑑𝑝(𝑥𝑇+1)𝑋
≥

∫ 𝑣(ℎ𝑇+1, 𝐷∗)𝑑𝑞(𝑥𝑇+1)𝑋
 is one, then the proof is over. Assume otherwise: there exists a 
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period 𝑇 in which 𝜇𝐷∗ ({𝜔 ∈ Ω: ∃𝑞 ∈ 𝑐𝑇 ∧ ∫ 𝑣(ℎ𝑇+1, 𝐷∗)𝑑𝑝𝑇(𝑥𝑇+1)𝑋
<

∫ 𝑣(ℎ𝑇+1, 𝐷∗)𝑑𝑞(𝑥𝑇+1)𝑋
}) > 0. Let us denote the first such a period as 𝑇0. 

Similarly to the proof of Lemma 1, let us identify a positive-measure set of 

elementary events for which it is possible to construct a decision policy which improves 

on the original decision policy. Currently, we are interested in elementary events for which 

there are choice sets 𝑐𝑇0 such that with positive probability an inferior prospect is selected. 

Let Ω0 = {𝜔 ∈ Ω: ∃𝑞 ∈ 𝑐𝑇0 ∧ ∫ 𝑣(ℎ𝑇0+1, 𝐷∗)𝑑[𝑞(𝑥𝑇0+1) − 𝑝𝑇0(𝑥𝑇0+1)]𝑋
> 0}. By 

assumption, 𝜇𝐷∗(Ω0) > 0. Let us now construct the improved decision policy 𝐷′ which for 

ℎ𝑇0 and 𝑐𝑇0 in Ω0 rather than 𝑝𝑇 selects the 𝑞 implicitly defined in the above definition of 

Ω0 and coincides with 𝐷∗ otherwise. Let us also formalize the relationship between 

𝑣(ℎ𝑇 , 𝐷) and 𝑣(ℎ𝑇+1, 𝐷): 

𝑣(ℎ𝑇 , 𝐷)

= 𝑞1(1, ℎ
𝑇)𝑓(ℎ𝑇)

+ 𝑞1(0, ℎ
𝑇)∫ ∫ ∫ 𝑣(ℎ𝑇+1, 𝐷)𝑑𝑝𝑇(𝑥𝑇+1)

𝑋

𝑑𝑞3(𝑝𝑇|𝐷(ℎ
𝑇 , 𝑐𝑇))

𝐷(ℎ𝑇,𝑐𝑇)

𝑑𝑞2(𝑐𝑇|ℎ
𝑇)

𝐶

 

Notice that  

∫ 𝑣(ℎ𝑇0+1, 𝐷′)𝑑𝑞(𝑥𝑇0+1)

𝑋

≧ ∫ 𝑣(ℎ𝑇0+1, 𝐷∗)𝑑𝑝𝑇0(𝑥𝑇0+1)

𝑋

 

with a strict inequality on a positive-measure set. Similarly  

∫ ∫ 𝑣(ℎ𝑇0+1, 𝐷′)𝑑𝑞(𝑥𝑇0+1)

𝑋

𝑑𝑞3 (𝑞|𝐷
′(ℎ𝑇0 , 𝑐𝑇0))

𝐷′(ℎ𝑇0 ,𝑐𝑇0)

≧ ∫ ∫ 𝑣(ℎ𝑇0+1, 𝐷∗)𝑑𝑝𝑇0(𝑥𝑇0+1)

𝑋

𝑑𝑞3 (𝑝𝑇0|𝐷
∗(ℎ𝑇0 , 𝑐𝑇0))

𝐷∗(ℎ𝑇0 ,𝑐𝑇0)
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holds with strict inequality on a positive measure set because the outer integral is simply 

the expected value with respect to the probability measure on the set of preferred prospects. 

Since 𝑞1, 𝑞2, and 𝑓 are the same for the two decision rules, we finally obtain 

𝑣(ℎ𝑇0 , 𝐷′) > 𝑣(ℎ𝑇0 , 𝐷∗) 

on a positive-measure set, which violates implication of Lemma 1. ∎ 

Proof of Theorem. Let us conduct a proof by contradiction and assume that there does not 

exist a function �̃�(𝑥) such that 𝜇𝐷∗({𝜔 ∈ Ω: 𝑣(ℎ
𝑇 , 𝐷∗) = ∑ 𝑟(𝑥𝑡)

𝑇−1
𝑡=1 + �̃�(𝑥𝑇)}) = 1. 

Notice that by definition,  

𝑣(ℎ𝑇 , 𝐷∗) = ∫ 𝑔𝑑𝜇𝐷∗
ℎ𝑇

Ω
ℎ𝑇

= ∫ 𝑓(ℎ𝜙)𝑑𝜇𝐷∗
ℎ𝑇

Ω
ℎ𝑇

= ∫ [∑𝑟(𝑥𝑡)

𝜙

𝑡=1

+ 𝑅(𝑥𝜙)] 𝑑𝜇𝐷∗
ℎ𝑇

Ω
ℎ𝑇

 

By assumption, 𝜙 ≥ 𝑇: we are interested in calculating 𝑣(ℎ𝑇 , 𝐷∗) only if the 

process has not terminated before reaching 𝑇. 𝑥𝑡 are determined for 𝑡 ≤ 𝑇 in the subspace 

Ωℎ𝑇, thus: 

𝑣(ℎ𝑇 , 𝐷∗) = ∑𝑟(𝑥𝑡)

𝑇−1

𝑡=1

+ ∫ [∑𝑟(𝑥𝑡)

𝜙

𝑡=𝑇

+ 𝑅(𝑥𝜙)] 𝑑𝜇𝐷∗
ℎ𝑇

Ω
ℎ𝑇

 

Hence, our current working assumption is equivalent to: 

∀�̃�(𝑥𝑇), 𝜇𝐷∗ ({𝜔 ∈ Ω: ∫ [∑𝑟(𝑥𝑡)

𝜙

𝑡=𝑇

+ 𝑅(𝑥𝜙)] 𝑑𝜇𝐷∗
ℎ𝑇(𝜔)

Ω
ℎ𝑇(𝜔)

= �̃�(𝑥𝑇)}) < 1 

In other words there must exist a positive-measure set of life histories ℎ𝑇 for which 

the expression ∫ [∑ 𝑟(𝑥𝑡)
𝜙
𝑡=𝑇 + 𝑅(𝑥𝜙)]𝑑𝜇𝐷∗

ℎ𝑇

Ω
ℎ𝑇

 is not a function of 𝑥𝑇, that is it can take 

different values for the same values of 𝑥𝑇. 

Consider two life histories ℎ𝑇1 and 𝑔𝑇2, for which terminal state is the same, such 

that 

∫ [∑ 𝑟(𝑥𝑡)

𝜙

𝑡=𝑇1

+ 𝑅(𝑥𝜙)] 𝑑𝜇𝐷∗
ℎ𝑇1

Ω
ℎ𝑇1

< ∫ [∑ 𝑟(𝑥𝑡)

𝜙

𝑡=𝑇2

+ 𝑅(𝑥𝜙)] 𝑑𝜇𝐷∗
𝑔𝑇2

Ω
𝑔𝑇2
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Note that there must exist a positive-measure set of such life histories ℎ𝑇1 for which 

exist a corresponding history 𝑔𝑇2 and which do not derive from a shorter life history in this 

set (a longer history derives from a shorter history if the longer history starts with the 

shorter history). Let us now devise an improved decision policy 𝐷′. For any life history 𝛼 

which derives from ℎ𝑇1 (that is 𝛼 arises by concatenating ℎ𝑇1 with some sequence 

(𝑥1, … , 𝑥𝑁) of length 𝑁 = 0,1,2,…) let us take a corresponding life history 𝛽 which derives 

from 𝑔𝑇2 (that is ℎ𝑇1 and 𝑔𝑇2 have the same terminal element and 𝛽 is derived from 𝑔𝑇2 by 

concatenating it with the same sequence (𝑥1, … , 𝑥𝑁) we used to derive 𝛼 from ℎ𝑇1). The 

new decision policy is such that 𝐷′(𝛼, 𝑐𝑇) = 𝐷
∗(𝛽, 𝑐𝑇) for all 𝛼 that can be derived from 

all ℎ𝑇1 and the decision policies are equal for the remaining life histories. In other words, 

roughly speaking, the improved decision policy uses superior parts of the original decision 

policy and applies them wherever original decision policy is inferior to itself.  

Given the stationarity and the same terminal element of ℎ𝑇1 and 𝑔𝑇2, the 

corresponding conditional probability distribution governing the process are the same: 

𝑞1(∙ |𝛼) = 𝑞1(∙ |𝛽) and 𝑞2(∙ |𝛼) = 𝑞2(∙ |𝛽). The measure induced by 𝐷′ on Ωℎ𝑇1  is 

equivalent to the measure induced by 𝐷∗ on Ω𝑔𝑇2 . Hence  

∫ [∑ 𝑟(𝑥𝑡)

𝜙

𝑡=𝑇1

+ 𝑅(𝑥𝜙)] 𝑑𝜇𝐷′
ℎ𝑇1

Ω
ℎ𝑇1

= ∫ [∑ 𝑟(𝑥𝑡)

𝜙

𝑡=𝑇2

+ 𝑅(𝑥𝜙)] 𝑑𝜇𝐷∗
𝑔𝑇2

Ω
𝑔𝑇2

> ∫ [∑ 𝑟(𝑥𝑡)

𝜙

𝑡=𝑇1

+ 𝑅(𝑥𝜙)] 𝑑𝜇𝐷∗
ℎ𝑇1

Ω
ℎ𝑇1

 

That is 𝑣(ℎ𝑇1 , 𝐷′) > 𝑣(ℎ𝑇1 , 𝐷∗) and since this strict inequality holds for a positive-measure 

set of life histories ℎ𝑇1, the implication of Lemma 1 is violated. As a result, there must exist 

a function �̃�(𝑥) such that 𝜇𝐷∗({𝜔 ∈ Ω: 𝑣(ℎ
𝑇 , 𝐷∗) = ∑ 𝑟(𝑥𝑡)

𝑇−1
𝑡=1 + �̃�(𝑥𝑇)}) = 1. Also, note 

that for 𝑇 = 1 we have �̃�(𝑥1) = 𝑣(ℎ
1, 𝐷∗). 

Finally, according to Lemma 2, almost surely, a prospect 𝑝 ∈ 𝑐𝑇 is selected only if 

for any prospect 𝑞 ∈ 𝑐𝑇  we have  
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∫ 𝑣(ℎ𝑇+1, 𝐷∗)𝑑𝑝(𝑥𝑇+1)

𝑋

≥ ∫ 𝑣(ℎ𝑇+1, 𝐷∗)𝑑𝑞(𝑥𝑇+1)

𝑋

 

⇔ ∫ [∑𝑟(𝑥𝑡)

𝑇

𝑡=1

+ �̃�(𝑥𝑇+1)] 𝑑𝑝(𝑥𝑇+1)

𝑋

≥ ∫ [∑𝑟(𝑥𝑡)

𝑇

𝑡=1

+ �̃�(𝑥𝑇+1)] 𝑑𝑞(𝑥𝑇+1)

𝑋

⇔∑𝑟(𝑥𝑡)

𝑇

𝑡=1

+ ∫ �̃�(𝑥𝑇+1)𝑑𝑝(𝑥𝑇+1)

𝑋

≥∑𝑟(𝑥𝑡)

𝑇

𝑡=1

+ ∫ �̃�(𝑥𝑇+1)𝑑𝑞(𝑥𝑇+1)

𝑋

⇔ ∫ �̃�(𝑥𝑇+1)𝑑𝑝(𝑥𝑇+1)

𝑋

≥ ∫ �̃�(𝑥𝑇+1)𝑑𝑞(𝑥𝑇+1)

𝑋

 

Denote 𝑢(𝑥) = 𝑎 + 𝑏�̃�(𝑥) for any 𝑎 ∈ 𝑅 and 𝑏 > 0. Then prospect 𝑝 ∈ 𝑐𝑇 is selected only 

if for any prospect 𝑞 ∈ 𝑐𝑇 

∫ 𝑢(𝑥𝑇+1)𝑑𝑝(𝑥𝑇+1)

𝑋

≥ ∫ 𝑢(𝑥𝑇+1)𝑑𝑞(𝑥𝑇+1)

𝑋

 

which satisfies the definition of a utility function policy and concludes the proof. ∎ 

Proof of Proposition 1. In both cases (a) and (b) the stochastic environment satisfies 

conditions of Corollary 1. Therefore if optimal decision policy exists, it almost surely must 

be a utility function. Proving that solution exists is done by demonstrating the solution. 

According to the Theorem, baseline utility function 𝑢0(𝑥) is the expected value of 

the performance function if the initial state is 𝑥. Consider a shifted utility function 𝑢𝑎(𝑥) =

𝑢0(𝑥 − 𝑎). An agent using 𝑢𝑎 makes the same decisions as an agent using 𝑢0, except that 

she perceives all prospects to be shifted by 𝑎. As a result, the distribution of 𝑥𝑇1+∆𝑇 given 

𝑥𝑇1 = 𝑎 for the agent using 𝑢𝑎 is the same as the distribution of 𝑥𝑇2+∆𝑇 + 𝑎 given 𝑥𝑇2 = 0 

for the agent using 𝑢0. 

Let 𝑢0(𝑥0) = 𝑢0(0) + 𝑥0 + ∆𝑢. Assume ∆𝑢 < 0. Consider an agent using shifted 

utility function 𝑢𝑥0. Given 𝑥𝑇1 = 𝑥0 the distribution of 𝑥𝑇1+∆𝑇 for the agent using 𝑢𝑥0 is 

the same as the distribution of 𝑥𝑇2+∆𝑇 + 𝑥0 for the agent using 𝑢0 and starting at 𝑥𝑇2 = 0. 

Hence 𝑢𝑥0(𝑥0) = 𝑢0(0) + 𝑥0 > 𝑢0(𝑥0) which almost surely violates Lemma 1. Assume 
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∆𝑢 > 0. Consider an agent using 𝑢−𝑥0. Given 𝑥𝑇1 = 0, the distribution of 𝑥𝑇1+∆𝑇 for this 

agent is the same as the distribution of 𝑥𝑇2+∆𝑇 − 𝑥0 for the agent using 𝑢0 if 𝑥𝑇2 = 𝑥0. 

Hence 𝑢−𝑥0(0) = 𝑢0(𝑥0) − 𝑥0 = 𝑢0(0) + ∆𝑢 > 𝑢0(0) which almost surely violates 

Lemma 1. Thus, ∆𝑢 = 0 and the in both cases (a) and (b) the baseline utility function is of 

the form 𝑢0(𝑥) = 𝑎 + 𝑥. 

Now, assume that there exists a better, possibly non-stationary decision policy. 

Since  𝑢0(𝑥) = 𝑎 + 𝑥 is equivalent to risk-neutrality in every period, such a policy would 

have to give up risk-neutrality with positive probability. Therefore, such policy would have 

to either accept gambles with negative expected value or reject gambles with positive 

expected value. This obviously reduces fitness and so such a decision policy cannot exist. 

Hence, being almost surely risk-neutral is the optimal decision policy.  

Since prospects are defined in terms of gains and losses with respect to the current 

state, the distribution of those gains and losses is invariant, and the preference between 

prospects does not depend on the current state. The expected gain between two consecutive 

states (given process has not terminated) is constant. Let denote this gain as ∆𝑥 − 𝑐̅. 

𝑢0(0) = 0𝑝0 + (∆𝑥 − 𝑐̅)𝑝0(1 − 𝑝0) + 2(∆𝑥 − 𝑐̅)𝑝0(1 − 𝑝0)
2 + 3(∆𝑥 − 𝑐̅)𝑝0(1 − 𝑝0)

3

+⋯ = (∆𝑥 − 𝑐̅)(1 − 𝑝0)∑𝑖𝑝0(1 − 𝑝0)
𝑖−1

∞

𝑖=0

= (∆𝑥 − 𝑐̅)(1 − 𝑝0)
1

𝑝0
 

The average gain ∆𝑥 − 𝑐̅ can be separated into two components: average 

consumption 𝑐̅ = 𝐸𝑐 and average gain from choosing profitable gambles. Since the utility 

function is almost surely linear, the agent chooses a gamble if and only if 𝑝(𝑥 − 𝑐 + 𝑔) +

(1 − 𝑝)(𝑥 − 𝑐 − 𝑙) > 𝑥 − 𝑐 ⇔ 𝑝𝑔 − (1 − 𝑝)𝑙 > 0 ⇔ 𝑝 >
𝑙

𝑔+𝑙
. Given 𝑙 and 𝑔, the 

expected gain is thus: 

∫[𝑝𝑔 + (1 − 𝑝)𝑙]𝑑𝑝

1

𝑙
𝑙+𝑔

=
𝑔2

2(𝑔 + 𝑙)
 

a) Assume that 𝑙, 𝑔 ~ 𝑈[0,2]. Then  
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∆𝑥 = ∫∫
𝑔2

2(𝑔 + 𝑙)

𝑑𝑔

2

𝑑𝑙

2

2

0

2

0

=
1

6
(ln(16) − 1) 

As a result, 𝑢0(0) = (
1

6
(ln(16) − 1) − 𝑐̅) (1 − 𝑝0)

1

𝑝0
+ 𝑥. 

b) Assume that 𝑙, 𝑔 ~ Exp(1). Then 

∆𝑥 = ∫ ∫
𝑔2

2(𝑔 + 𝑙)

+∞

0

+∞

0

𝑑𝑔

𝑒𝑔
𝑑𝑙

𝑒𝑙
=
1

3
 

As a result, 𝑢0(0) = (
1

3
− 𝑐̅) (1 − 𝑝0)

1

𝑝0
+ 𝑥. ∎ 

Proof of Proposition 2. The described stochastic environment satisfies conditions of 

Corollary 1. Thus, 𝑢0(𝑥) = 𝐸[𝑓(ℎ
𝜙)|𝑥1 = 𝑥] = 𝑃(𝑥𝜙 ≥ 1|𝑥1 = 𝑥). Consider any 𝑥0 ∈ 𝑅 

and 𝜀 > 0 and let us assume that the current state is 𝑥0. Assuming process does not 

terminate in the current period, we can partition the area where process terminates into 

three parts. Let 𝑝− = 𝑃(𝑥𝜙 < −𝜀|𝑥𝑇 = 𝑥0), 𝑝𝜀 = 𝑃(−𝜀 ≤ 𝑥𝜙 < 0|𝑥𝑇 = 𝑥0), and 𝑝+ =

𝑃(0 ≤ 𝑥𝜙|𝑥𝑇 = 𝑥0). Then 𝑢0(𝑥0) = 𝑝0𝟏(𝑥0 ≥ 0) + (1 − 𝑝0)𝑝+.  

Consider a shifted utility function 𝑢𝜀(𝑥) = 𝑢0(𝑥 − 𝜀). An agent using 𝑢𝜀 makes 

the same decisions as an agent using 𝑢0, except that she perceives all prospects to be shifted 

by 𝜀. As a result, the distribution of 𝑥𝑇1+∆𝑇 given 𝑥𝑇1 = 𝜀 for the agent using 𝑢𝜀 is the same 

as the distribution of 𝑥𝑇2+∆𝑇 + 𝜀 given 𝑥𝑇2 = 0 for the agent using 𝑢0. 

In accordance with Lemma 1, 𝑢0(𝑥0 + 𝜀) ≥ 𝑃(0 ≤ 𝑥𝜙|𝑥𝑇 = 𝑥0 + 𝜀 ∧ 𝐷 = 𝑢𝜀). 

Since 𝑃(0 ≤ 𝑥𝜙|𝑥𝑇 = 𝑥0 + 𝜀 ∧ 𝐷 = 𝑢𝜀) = 𝑝0𝟏(𝑥0 + 𝜀 ≥ 0) + (1 − 𝑝0)(𝑝+ + 𝑝𝜀) ≥

𝑝0𝟏(𝑥0 ≥ 0) + (1 − 𝑝0)𝑝+ = 𝑢0(𝑥0), we have 𝑢0(𝑥0 + 𝜀) ≥ 𝑢0(𝑥0), that is 𝑢0(𝑥) is a 

non-decreasing function of 𝑥. 

Let us prove now that lim
𝑥→+∞

𝑢0(𝑥) = 1. Assume that the current state is 𝑥0 ≫ 0. 

𝑢0(𝑥0) is the probability that the process terminates at 𝑥𝜙 ≥ 0 and 1 − 𝑢0(𝑥0) is the 

probability that the process terminates at 𝑥𝜙 < 0. Let us bound 1 − 𝑢0(𝑥0) from above and 

show that this bound goes to zero as 𝑥0 goes to plus infinity. 
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To bound 1 − 𝑢0(𝑥0) from above, let us assume that the agent always chooses the 

gamble instead of secure state, always loses, and when her state reaches drops below zero, 

the process terminates immediately. Denote probability of 𝑥𝜙 < 0 under such 

circumstances as 𝑝.  

𝑝 = (1 − 𝑝0)𝑃(𝑙1 + 𝑐1 > 𝑥0) + (1 − 𝑝0)
2𝑃(𝑙1 + 𝑙2 + 𝑐1 + 𝑐2 > 𝑥0)

+ (1 − 𝑝0)
3𝑃(𝑙1 + 𝑙2 + 𝑙3 + 𝑐1 + 𝑐2 + 𝑐3) + ⋯

=∑(1 − 𝑝0)
𝑖𝑃(∑𝑙𝑘

𝑖

𝑘=1

+∑𝑐𝑘

𝑖

𝑘=1

> 𝑥0)

+∞

𝑖=1

=∑(1 − 𝑝0)
𝑖𝑃(𝐺𝑖

𝐿 + 𝐺𝑖
𝐶 > 𝑥0)

+∞

𝑖=1

 

where 𝑙𝑖 ~ Exp(1), and 𝑐𝑖 ~ Exp (
1

𝑐̅
) are independently distributed for all 𝑖, ∑ 𝑙𝑘

𝑖
𝑘=1 =

𝐺𝑖
𝐿 ~ Γ(𝑖, 1), and ∑ 𝑐𝑘

𝑖
𝑘=1 = 𝐺𝑖

𝐶  ~ Γ (𝑖,
1

𝑐̅
). Γ denotes the Gamma distribution.  

Let us show that 𝑝 can be arbitrarily close to zero. Observe that ∀𝑛 ≥ 1, ∀𝜀 >

0, ∃𝑥0 ∶  ∀𝑥 > 𝑥0, ∀𝑖 ≤ 𝑛, 𝑃(𝐺𝑖
𝐿 + 𝐺𝑖

𝐶 > 𝑥0) < 𝜀. Hence  

𝑝 =∑(1 − 𝑝0)
𝑖𝑃(𝐺𝑖

𝐿 + 𝐺𝑖
𝐶 > 𝑥0)

𝑛

𝑖=1

+ ∑ (1 − 𝑝0)
𝑖𝑃(𝐺𝑖

𝐿 + 𝐺𝑖
𝐶 > 𝑥0)

+∞

𝑖=𝑛+1

≤∑(1 − 𝑝0)
𝑖𝜀

𝑛

𝑖=1

+ ∑ (1 − 𝑝0)
𝑖

+∞

𝑖=𝑛+1

= 𝜀(1 − 𝑝0)∑(1 − 𝑝0)
𝑖

𝑛−1

𝑖=0

+ (1 − 𝑝0)
𝑛+1∑(1− 𝑝0)

𝑖

+∞

𝑖=0

= 𝜀(1 − 𝑝0)
1 − (1 − 𝑝0)

𝑛

𝑝0
+
(1 − 𝑝0)

𝑛+1

𝑝0
 

We can choose 𝜀 and 𝑛 so that 𝑝 is arbitrarily close to zero. And since 𝑝 ≥ 1 −

𝑢0(𝑥0) and 𝑢0(𝑥0) is non-decreasing, we have lim
𝑥→+∞

𝑢0(𝑥) = 1.  
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It is possible to prove that lim
𝑥→−∞

𝑢0(𝑥) = 0 analogously by bounding 𝑢0(𝑥0) from 

above given 𝑥0 ≪ 0 and assuming that agent’s consumption is zero, she always chooses to 

gamble and wins, and the process terminates as soon as the state reaches or exceeds zero. 

Assume 𝑢0(𝑥0) = 0 for some 𝑥0. Then 𝑢0(𝑥0 − 𝑐) = 𝑢0(𝑥0 − 𝑐 − 𝑙) = 0 for any 

𝑐 and 𝑙, since 𝑢0 is non-decreasing. However, since lim
𝑥→+∞

𝑢0(𝑥) = 1 and 𝑔 ~ Exp(1), 

𝑃(𝑥0 − 𝑐 + 𝑔 ≥ 0) > 0 which implies 𝑢0(𝑥0) > 0. Now assume 𝑢0(𝑥0) = 1 for some 𝑥0. 

Let us say that for the next 2 ⌈
𝑥0

𝑐̅
⌉ periods the agent gets 𝑐 ∈ (2𝑐̅. 3𝑐̅), 𝑔 ∈ (0, 𝑐̅), 𝑙 ∈

(0, 𝑐̅), 𝑝 ∈ [0,1] and then process terminates. There is a positive probability that this will 

happen and since in each period the state decreases by at least 𝑐̅, the process must terminate 

at 𝑥𝜙 < 0 with positive probability which contradicts 𝑢0(𝑥0) = 1. This concludes proof of 

the part (a) of the proposition. 

Now, let us prove that for any 𝑇 > 0 the distribution of 𝑥𝑇 is such that 

𝑃(𝑎 < 𝑥𝑇 < 𝑏) > 0 for any 𝑎 < 𝑏 and that 𝑃(𝑥𝑇 = 𝑎) = 0 for any 𝑎. In other words, 𝑥𝑇 

is a continuous random variable with no mass points and the support spanning entire 𝑅.  

Consider an arbitrary state 𝑥𝑇 and an arbitrary interval (𝑎, 𝑏). Because 

lim
𝑥→−∞

𝑢0(𝑥) = 0  and 𝑢0(𝑥𝑇) > 0, there must exist an interval (𝑢, 𝑣) such that 𝑣 < 𝑎, 

𝑢0(𝑣) < 𝑢0(𝑎), 𝑣 < 𝑥𝑇, and 𝑃(𝑥𝑇 − 𝑐 ∈ (𝑢, 𝑣)) > 0. For each 𝑥𝑇 − 𝑐 ∈ (𝑢, 𝑣) we have 

𝑃(𝑥𝑇 − 𝑐 + 𝑔 ∈ (𝑎, 𝑏)) > 0. Moreover, for each 𝑥𝑇 − 𝑐 ∈ (𝑢, 𝑣) and 𝑥𝑇 − 𝑐 + 𝑔 ∈ (𝑎, 𝑏) 

we have 𝑃(𝑝𝑢0(𝑥𝑇 − 𝑐 + 𝑔) + (1 − 𝑝)𝑢0(𝑥𝑇 − 𝑐 − 𝑙) > 𝑢0(𝑥𝑇 − 𝑐)) > 0. The agent 

prefers to take the gamble for any 𝑙 and sufficiently large 𝑝, since 𝑢0(𝑥𝑇 − 𝑐 + 𝑔) ≥

𝑢0(𝑎) > 𝑢0(𝑣) ≥ 𝑢0(𝑥𝑇 − 𝑐). As a result, 𝑃(𝑥𝑇+1 ∈ (𝑎, 𝑏)) > 0 and by induction for any 

𝑇 > 0 and any 𝑎 < 𝑏 we have 𝑃(𝑎 < 𝑥𝑇 < 𝑏) > 0.  

Consider any 𝑥𝑇 . Since 𝑐, 𝑝, 𝑙, and 𝑔 have independent continuous distributions 

without mass points, 𝑥𝑇+1 also must have a continuous distribution without mass points. 

Thus, by induction, regardless of the distribution of 𝑥1, for any 𝑇 > 1, 𝑥𝑇 has a continuous 

distribution with no mass points.  
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Recall the argument that 𝑢0(𝑥) is non-decreasing at the beginning of this proof. 

Recall that 𝑝𝜀 = 𝑃(−𝜀 ≤ 𝑥𝜙 < 0|𝑥𝑇 = 𝑥0). Since for any 𝑇 > 1, 𝑃(−𝜀 ≤ 𝑥𝑇 < 0) > 0, 

hence 𝑝𝜀 > 0. In turn 𝑢0(𝑥0 + 𝜀) ≥ 𝑃(0 ≤ 𝑥𝜙|𝑥𝑇 = 𝑥0 + 𝜀 ∧ 𝐷 = 𝑢𝜀) = 𝑝0𝟏(𝑥0 + 𝜀 ≥

0) + (1 − 𝑝0)(𝑝+ + 𝑝𝜀) > 𝑝0𝟏(𝑥0 ≥ 0) + (1 − 𝑝0)𝑝+ = 𝑢0(𝑥0) that is 𝑢0(𝑥0) is strictly 

increasing. This concludes proof of the part (b) of the proposition. 

Consider any 𝑥0 and 𝜀 > 0 sufficiently small such that if 𝑥0 > 0 then 𝑥0 − 𝜀 > 0. 

Assuming process does not terminate in the current period, we can partition the area where 

it terminates into three parts. Let 𝑝− = 𝑃(𝑥𝜙 < 0|𝑥𝑇 = 𝑥0), 𝑝𝜀 =

𝑃(0 ≤ 𝑥𝜙 < 𝜀|𝑥𝑇 = 𝑥0), and 𝑝+ = 𝑃(𝜀 ≤ 𝑥𝜙|𝑥𝑇 = 𝑥0). Then 𝑢0(𝑥0) = 𝑝0𝟏(𝑥0 ≥ 0) +

(1 − 𝑝0)(𝑝𝜀 + 𝑝+).  

Let us use a shifted utility function 𝑢−𝜀(𝑥) = 𝑢0(𝑥 + 𝜀). The distribution of 𝑥𝜙 for 

agent using 𝑢−𝜀 given 𝑥𝑇 = 𝑥0 − 𝜀 is the same as the distribution of 𝑥𝜙 − 𝜀 for the agent 

using 𝑢0 given 𝑥𝑇 = 𝑥0. Hence, 𝑃(0 ≤ 𝑥𝜙|𝑥𝑇 = 𝑥0 − 𝜀 ∧ 𝐷 = 𝑢−𝜀) = 𝑝0𝟏(𝑥0 − 𝜀 ≥

0) + (1 − 𝑝0)𝑝+. According to Lemma 1, 𝑢0(𝑥 − 𝜀) ≥

𝑃(0 ≤ 𝑥𝜙|𝑥𝑇 = 𝑥0 − 𝜀 ∧ 𝐷 = 𝑢−𝜀). Thus  

𝑢0(𝑥0) − 𝑢0(𝑥 − 𝜀)

≤ 𝑝0𝟏(𝑥0 ≥ 0) + (1 − 𝑝0)(𝑝𝜀 + 𝑝+) − 𝑝0𝟏(𝑥0 − 𝜀 ≥ 0) − (1 − 𝑝0)𝑝+

= 𝑝0[𝟏(𝑥0 ≥ 0) − 𝟏(𝑥0 − 𝜀 ≥ 0)] + (1 − 𝑝0)𝑝𝜀 

If 𝑥0 and 𝑥0 − 𝜀 have the same sign, that is if 𝑥0 ≠ 0, then 𝟏(𝑥0 ≥ 0) =

𝟏(𝑥0 − 𝜀 ≥ 0) and 𝑢0(𝑥0) − 𝑢0(𝑥0 − 𝜀) ≤ (1 − 𝑝0)𝑝𝜀. Since there are no mass points in 

the distribution of 𝑥𝜙 for 𝜙 > 𝑇, we have 𝑝𝜀 → 0 as 𝜀 → 0. As a result, for any 𝑥0 ≠ 0, 

lim
𝜀→0

𝑢0(𝑥0) − 𝑢0(𝑥0 − 𝜀) = 0, that is 𝑢0(𝑥0) is continuous. 

If 𝑥0 and 𝑥0 − 𝜀 have opposite signs, that is if 𝑥0 = 0, then 𝟏(𝑥0 ≥ 0) = 1 and 

𝟏(𝑥0 − 𝜀 ≥ 0) = 0, and 𝑢0(0) − 𝑢0(−𝜀) ≤ 𝑝0 + (1 − 𝑝0)𝑝𝜀. Thus lim
𝜀→0

𝑢0(0) −

𝑢0(−𝜀) ≤ 𝑝0. 

Consider now alternative partitioning. Let 𝑝− = 𝑃(𝑥𝜙 < −𝜀|𝑥𝑇 = −𝜀), 𝑝𝜀 =

𝑃(−𝜀 ≤ 𝑥𝜙 < 0|𝑥𝑇 = −𝜀), and 𝑝+ = 𝑃(0 ≤ 𝑥𝜙|𝑥𝑇 = −𝜀). Then, 𝑢0(−𝜀) = (1 −
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𝑝0)𝑝+. Let us use a shifted utility function 𝑢𝜀(𝑥) = 𝑢0(𝑥 − 𝜀). 

𝑃(𝑥𝜙 ≥ 0|𝑥𝑇 = 0 ∧ 𝐷 = 𝑢𝜀) = 𝑝0 + (1 − 𝑝0)(𝑝𝜀 + 𝑝+). According to Lemma 1, 

𝑢0(0) ≥ 𝑃(𝑥𝜙 ≥ 0|𝑥𝑇 = 0 ∧ 𝐷 = 𝑢𝜀). Thus, 𝑢0(0) − 𝑢0(−𝜀) ≥ 𝑝0 + (1 − 𝑝0)𝑝𝜀. As a 

result, lim
𝜀→0

𝑢0(0) − 𝑢0(−𝜀) ≥ 𝑝0.  

In summary, 𝑝0 ≤ lim
𝜀→0

𝑢0(0) − 𝑢0(−𝜀) ≤ 𝑝0, and so lim
𝜀→0

𝑢0(0) − 𝑢0(−𝜀) = 𝑝0. 

This concludes proof of the part (c) of the proposition. ∎ 
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