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Abstract:  Colonel Blotto games have been applied in a variety of contests where players 

allocate resources across multiple battlefields, and a battlefield is won by the player with 

the most resources there.  One drawback of this standard model is the assumption that 

players can perfectly target their efforts toward different battlefields.  In many situations, 

however, players can only imperfectly target different battlefields, with an allocation 

affecting multiple battlefields.  We develop an extension of Blotto incorporating this type 

of interrelation.  We use a novel numerical method, as well as standard analytic 

techniques, to explore equilibrium behavior.  We find that when the players’ resources 

are equal, at least one player tends to allocate resources asymmetrically across 

battlefields.  When resources are unequal, however, even by an arbitrarily small amount, 

resource allocations may be much symmetric.  We also find that in many cases, a player 

can reduce total resources without lowering his expected payoff. 
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(I)  Introduction 

A variety of contests exist in which the opponents compete by expending 

resources.  In many games of this type, the players benefit by allocating resources 

differently from their opponents; the game is thus one of “strategic allocative 

mismatch.”
1
  Prominent examples of this are military contests and political campaigns.  

One approach to modeling such situations is the classic Colonel Blotto game.
2
 In its 

simplest version, the players have equal resources that they allocate across different 

battlefields of equal size. The winner in a battlefield is determined by which player puts 

in more resources, that is “gets there first with the most.”
3
  This creates discontinuities in 

the payoffs of the players.  The overall goal of the players is to maximize the expected 

number of battlefields they win.  Extensions of this model allow for the players to have 

unequal resources, for battlefields to be of different sizes, and for one of the players to 

have an advantage on some battlefields so as to be able to win them with fewer resources 

(perhaps, having gotten there first, within limits, a player does not need the most).
4, 5

   

Although the Colonel Blotto game can be straightforward to specify, equilibrium 

behavior can be complicated. Pure strategy equilibria exist only in special cases, such as 

when only two battlefields exist or when one battlefield is much larger than all the others 

                                                 
1
 See Golman and Page (2009). 

2
 Borel (1921) first proposed this game, with further analysis in Borel and Ville (1938).  Modern analysis 

began with Tukey (1949), with follow-ups by Blackett (1954, 1958) and Bellman (1969).  Only recently 

has a general solution to the continuous game been provided (Roberson (2006)); see also Weinstein (2012).   
3
 In response to a question about who would win a battle, Gen. Nathan Bedford Forest of the Confederate 

Army replied, “The one who gets there first with the most men.”  This quotation is often used in 

discussions of strategy in a variety of contexts. 
4
 Kovenock and Roberson (2008) consider a model of two-party competition where parties attract voters by 

offering redistributive policies when voters have heterogeneous loyalties to the different parties.  There is a 

formal overlap between getting votes through redistributive policies and attracting them through campaign 

expenditures, as analyzed here. 
5
 Colonel Blotto models of advertising begin with Friedman (1958).  Colonel Blotto models of elections go 

back at least to Sankoff and Mellos (1972).  Recently, Szentes and Rosenthal (2003) study a type of all-pay 

auction of which a Colonel Blotto model of Electoral College competition is an example.  Laslier and 

Picard (2002) consider a model of distributive politics that reduces to a Colonel Blotto game. 
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combined.  In the latter case, the pure strategy equilibrium has both players spending all 

resources in the larger battlefield.  Pure strategy equilibria also exist if one player has 

such an overwhelming resource advantage that it can win all battlefields, regardless of the 

other players’ allocations.   

Typically, when there are more than two battlefields, only mixed strategy 

equilibria exist, and can be quite complex. Consider a player maximizing over n 

battlefields.  The marginal distributions of the mixed strategy give the probability of 

allocating different amounts to any battlefield, while the joint distributions give the 

probability of allocating different n-tuples across the battlefields.  Necessary and 

sufficient conditions on the marginal distributions for a mixed strategy equilibrium have 

been specified (see Roberson (2006)).  Consistent with any set of marginal distributions, 

multiple joint distributions can exist.   

Characterizing the equilibrium joint distributions has been more difficult.  

Examples of these go back to Borel and Ville (1938) with other possibilities shown only 

recently by Roberson (2006) and Weinstein (2012) for Blotto games with more than two 

battlefields, and Macdonell and Mastronardi (2014) for Blotto games with exactly two 

battlefields.  The equilibrium joint distributions can vary widely in their nature.  Some are 

asymmetric and have supports that are of lower dimension than the n-1 dimensional 

space of allocations.  There are also equilibria with full support such as the Hex 

equilibrium given by Borel and Ville; see Weinstein for a discussion of this 

equilibrium.  In an equilibrium with full support, any neighborhood in the space of 

allocations, including any containing the point at which resources are allocated equally to 

all battlefields, has positive measure.   
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One assumption in all these variants is that players can perfectly target their 

resources. That is, resources can be allocated to a single battlefield with no spillover 

effects to other battlefields. In many contexts, however, spillovers do exist.  For example, 

consider advertising campaigns by firms or political candidates.  A battlefield might be 

considered to be some group defined by gender, ethnicity, age, socioeconomic status, 

geographic location, or preferences.  In a perfect world for the players, they would be 

able to target expenditures in the form of ads with different messages very narrowly 

aimed at each demographic group, with only that group seeing the ad designed for it. 

While firms or candidates do try to carry out such targeting through such actions as the 

placement of different ads on specific radio or television programs, perfect targeting 

rarely is possible.  Ads that are aimed at one group will often be observed by members of 

other groups.
6
  This is only beginning to change with the advent of targeted Internet 

advertisements. 

Fletcher and Slutsky (2011) develop a structure that allows for imperfect targeting 

in the probabilistic voting context.  Their structure has two media markets where ads can 

be purchased. In each market, the ads are viewed by three groups of voters: those initially 

supporting each candidate and those indifferent between them. The partisan types are 

assumed to have an intensity of preference toward their preferred candidates.  Ads move 

this intensity in favor of the candidate running the ad. Under probabilistic voting, the 

support each candidate receives from a type varies continuously with its post-campaign 

intensity.  

                                                 
6
 Golman and Page (2009) also offer extensions of the Colonel Blotto game that involve externalities across 

theaters.  However, their externalities are in the payoffs, with players valuing combinations of battlefields 

beyond simply summing the values of each battlefield.  They do not consider having the outcomes on 

multiple theaters depend on the same expenditures as we do here. 
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In this paper, we replace probabilistic voting with a Blotto-style assumption that 

all members of each group in a market vote for the candidate the group prefers after all 

ads have been shown, no matter how small the group’s preference for that candidate.  In 

addition, we apply the model to situations beyond the political context.
7
  We consider a 

situation in which multiple battlefields are grouped together because they cannot be 

targeted separately, and the players allocate resources to each grouping.  For 

convenience, we will call a grouping a theater and each component of the grouping a 

battlefield.  We will analyze allocations across two theaters, each of which has three 

battlefields.
8
  The two theaters overall may be of unequal importance, and the different 

battlefields can also vary in importance. One of the players may have an advantage on 

some battlefield so can win there, even though she allocates fewer resources to that 

battlefield than the other player. The effectiveness of allocations can differ across theaters 

or even across battlefields.  The effectiveness function is, however, the same for both 

players.
9
  Unlike the typical Colonel Blotto game or the model in Fletcher and Slutsky 

(2011), we also assume that allocations can have diminishing rather than constant 

marginal effectiveness.   

Our results under imperfect targeting are not only consistent with the basic nature 

of standard Blotto, but strengthen those results. First, pure strategy equilibria are even 

less likely to exist with imperfect targeting.  Unlike the standard results, pure strategy 

                                                 
7
 Imperfect targeting has been analyzed in some contexts, such as development economics (see Bibi and 

Duclos (2007)).  However, it has not been explored in the contest literature. 
8
 While it would be interesting to analyze the case where there is a continuum of battlefields, such an 

approach would no longer be in the spirit of a Blotto model.  In a continuum model, the amount a player 

wins would vary continuously with the resources each side expends, while in a Blotto model, there are 

significant discontinuities in the amounts won as functions of the resources expended.  
9
 This generalization has an important implication in the political context.  Since the effectiveness function 

may differ across markets, it incorporates the possibility of ad price differences across markets.  Thus, the 

decision variable could be either the number of ads played in the market or the total advertising 

expenditure. 
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equilibria may not exist even when there are only two theaters of unequal size.  As 

follows from Theorem 1 and Lemma 2 below, in some cases it is even true that the 

neutral battlefield in one theater must be larger than the entire other theater for a pure 

strategy equilibrium to exist.  Of course, then the equilibrium has all resources expended 

in the larger theater.   

Second, consider situations where pure strategy equilibria do not exist.  As we 

show in Theorem 2, when the two players have equal resources that lie in some range 

determined by the size of the advantages the players have in the non-neutral battlefields, 

the equilibrium joint distributions cannot have full support for both players.  At least one 

player puts no probability weight in a neighborhood around equal allocation across the 

two theaters.
10

   

To more fully analyze mixed strategy equilibria, we convert our two-person 

constant-sum games into a set of linear programming problems.  We use a novel method 

to develop necessary conditions about the equilibrium strategies.  To do this, we 

numerically solve more than 500,000such problems over a range of parameter values, 

which allows us to more fully understand what happens in the interval around equal 

allocation across the two theaters.  The results for exactly equal resources turn out to be 

knife-edge.  When resources differ, even by an arbitrarily small amount, it is possible for 

both players to have full support around equal distribution across the two theaters.   

Theorem 3 and related numerical observations give some insight into the shape of 

the players’ probability distributions in the neighborhood around equal allocations across 

the two theaters.  We find evidence that in the neighborhood around equal allocation, the 

                                                 
10

 Note that although imperfect targeting introduces an element of having more than two theaters, an 

important element of just two theaters remains.  Taking into account budget balance, each player has only a 

one-dimensional allocation decision. 
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two players tilt their probability weight toward different theaters.  One interesting insight 

is that in many circumstances, there are situations of “slackness,” where adding to a 

player’s resources does not increase that player’s expected payoff.  This would imply that 

in the political context, a rent-seeking candidate would be able to extract resources from 

the campaign without lowering his expected vote or probability of winning. 

The formal model is described in Section II.  Pure strategy equilibria are 

considered in Section III.  The results on mixed strategy equilibria are presented in 

Section IV, and conclusions are discussed in Section V.  All proofs and discussion of the 

numerical analysis are contained in two Appendices. 

 

(II)  The Model 

1. Specification 

Consider a contest between two players A and B, each of whom divides resources 

between two theaters denoted m and n.  Each theater has three battlefields denoted 1, 2 

and 3.  A pair (i, j) denotes battlefield i of theater j.  Each battlefield possesses two 

characteristics:  importance and advantage.  Importance may be the size of the battlefield, 

but could more generally relate to its significance to the players.  The importance of 

battlefields are denoted by ij, i = 1, 2, 3, j = m, n.  The overall importance of a theater is 

assumed to be the sum of the importance of the battlefields, with M = im and N = in.  

The two players have the same evaluation of the importance of battlefields.   

Advantage relates to the extent to which the characteristics of a battlefield favor 

one of the players over the other, and is denoted ij. Battlefield 1 in each theater favors 

B, while battlefield 3 favors A.  For convenience, advantages are from the point of view 
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of A, so advantages in battlefields 1 will have negative values, while those in battlefields 

3 will be positive.  Battlefields 2 are neutral, with neither player having an advantage 

before the battle begins. 

The total resources available to the two players are RA and RB, which we assume 

are exogenously determined.  The players can allocate their resources across the two 

theaters with xm and xn denoting the allocations of player A, and ym and yn denoting the 

allocations of player B.  Thus, the two players face resource constraints  

𝑥𝑚 + 𝑥𝑛 = 𝑅𝐴 and 𝑦𝑚 + 𝑦𝑛 = 𝑅𝐵             (1) 

An allocation to a theater goes to all the battlefields in that theater in the same amount.  

Resources allocated to a theater by a player will shift the advantage toward that player.  

The effectiveness of resources in shifting the advantage are given by the functions hij in 

battlefield i of theater j, where    

ℎ𝑖𝑗
′ > 0, ℎ𝑖𝑗

′′ ≤ 0, ℎ𝑖𝑗(0) = 0                     (2) 

For example, in battlefield (1, n), the post-battle advantage is n + h1n (xn) – h1n (yn).  

Figure 1 shows the post-battle situation in the two theaters. 

This specification generalizes the standard Colonel Blotto assumption that 

effectiveness is linear in expenditures.  Here, we allow for the possibility of diminishing 

marginal effectiveness.  In addition, specifying different functions for each battlefield 

allows the effectiveness of allocations to differ across battlefields.  In the military 

context, this could be due to differences between the battlefields in aspects such as size 

and terrain.  We continue to assume that the effectiveness functions are the same for both 

players and are independent of the level of the other player’s allocation. 
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Any battlefield is won by the player with the post-battle advantage.  Let I denote 

the post-battle advantage. If neither has an advantage, each player wins the battlefield 

with probability 0.5.  Then the outcome for player A in any battlefield is specified as:  

𝑉(𝐼) = {

1 𝑖𝑓𝑓 𝐼 > 0
. 5 𝑖𝑓𝑓 𝐼 = 0
0 𝑖𝑓𝑓 𝐼 < 0

       (3) 

The overall payoff to Player A is 

𝑓(𝑥𝑚, 𝑦𝑚) = 𝜃1𝑚𝑉(𝛼1𝑚 + ℎ1𝑚(𝑥𝑚) − ℎ1𝑚(𝑦𝑚)) + 𝜃2𝑚𝑉(ℎ2𝑚(𝑥𝑚) − ℎ2𝑚(𝑦𝑚)) +

𝜃3𝑚𝑉(𝛼3𝑚 + ℎ3𝑚(𝑥𝑚) − ℎ3𝑚(𝑦𝑚)) + 𝜃1𝑛𝑉(𝛼1𝑛 + ℎ1𝑛(𝑅𝐴 − 𝑥𝑚) − ℎ1𝑚(𝑅𝐵 − 𝑦𝑚)) +

𝜃2𝑛𝑉(ℎ2𝑛(𝑅𝐴 − 𝑥𝑚) − ℎ2𝑛(𝑅𝐵 − 𝑦𝑚)) + 𝜃3𝑛𝑉(𝛼3𝑛 + ℎ3𝑛(𝑅𝐴 − 𝑥𝑚) − ℎ3𝑛(𝑅𝐵 − 𝑦𝑚)) 

           (4) 

The players simultaneously make their allocation decisions, with A choosing xm to 

maximize f and B choosing ym to minimize f, given the resource constraints (1).   

Within this general structure, we make some notational conventions and some 

technical assumptions to assure that the analysis is interesting.  Without loss of 

generality, we rename the players so A’s resources are at least as great as B’s (i.e. RA ≥ 

RB).   Similarly, we rename the theaters so that overall, n is at least as important as m (N 

≥ M).   

If the advantages in battlefields 1 and 3 were so large as to be insurmountable by 

any allocation of resources by the disadvantaged candidate, then the game would reduce 

to a single theater, and the extension would not be interesting.  Thus, for all battlefields to 



 

10 

be in play, we assume each player has sufficient resources to potentially win those 

battlefields in which the other player has an advantage:
11

 

-j < h1j(RA) and 3j < h3j(RB), j = m, n            (5) 

If the resource differences were very large, one player could overwhelm the other 

on all battlefields.  To rule this out, we assume the resource difference between the 

players is not very large relative to the battlefield advantages: 

-j > h1j(RA – RB) and 3j > h3j(RA – RB), j = m, n           (6) 

In essence, allocating just the difference in resources available to the players to a theater 

is not enough to sway the outcome of any non-neutral battlefield.
12

  Note that (5) and (6) 

with respect to 3j imply that RA < 2RB. 

Next, if there is an exact balancing of the importance of certain battlefields, then 

knife-edge equilibria may result.  For example, if 2m = 2n,  multiple equilibria may 

exist, because the gains and losses from small changes in allocations that only change the 

outcomes on the neutral battlefields cancel out.  Such equilibria are non-generic, arising 

only on measure zero sets in the parameter space.  The following condition rules out this 

type of equilibrium: 

∑ (𝑡𝑖𝜃𝑖𝑛 + 𝑠𝑖𝜃𝑖𝑚)
3
𝑖=1 ≠ 0 when 𝑡𝑖 and 𝑠𝑖 each take any values from the set        (7) 

(0, 1, -1, ½, -½), but are not all zero.   

The expression in (7) is a general formula for the change in f due to changes in a player’s 

strategy.  In a battlefield, either a strategy change does not change the outcome, or it 

causes victory to switch from one player to the other, or it creates or breaks a tie.  One 

                                                 
11

 Note that other battlefields could exist with very high advantages, for example, with 3j > h3j(RB), but 

those battlefields will always be won by the favored player.  Thus, players need not consider them when 

setting strategies. 
12

 Note that the second condition in (6) is imposed to ensure that there are not extreme asymmetries in the 

two players’ advantages. 
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implication of this assumption is that M ≠ N, so that the two theaters cannot be exactly 

equal in importance.  Therefore, given the naming convention above, M < N must hold.  

Another implication is that 2m ≠ 2n, so the importance of the initially neutral battlefields 

cannot be exactly equal.   

 

2.  Examples 

Consider the following settings that fit within the context of this model.   

 

Military campaigns 

First, to extend the classic Colonel Blotto warfare model to incorporate imperfect 

targeting, consider a military campaign between armies A and B.  A allocates xm soldiers 

to theater m and xn soldiers to theater n, while B allocates ym and yn soldiers across the 

theaters.  In each theater, the armies face off across a linear battlefront, with the terrain 

giving advantage to one army or the other at different points along the battlefront.  

Battlefields 1 and 3 denote points along the front that are advantageous to B and A, 

respectively, while battlefields 2 are neutral, favoring neither army.  For example, one 

location in theater m might have boulders on B’s side of the front, giving that army’s 

soldiers convenient cover.  The magnitude by which B gains from this cover is 

represented by –1m.  The importance parameter 1m could be based on the size of this 

location or on its strategic value to the armies.  Such points of advantage need not be 

geographically contiguous, so that it would be difficult for an army to send soldiers only 

to neutral points or to those points where that army has an advantage.  Thus, each army is 

unable to perfectly target its troops to areas with a given advantage.  The effectiveness of 
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troops, represented by the hij functions, could differ across battlefields because of 

differences in such factors as ease in communications or resupply.  

 

Advertising campaigns 

A second application of the model is in advertising campaigns, either between 

two firms competing for sales, or two political candidates competing for votes.  In the 

product advertising case, the firms do not compete by changing the characteristics of the 

products, but through advertising.  Consumers differ in which product they prefer, with 

some being indifferent.  For example, a few years ago the University of Florida switched 

from selling only Coke products to selling only Pepsi products on campus.  Some at the 

University were ecstatic about the change, others (including one of the authors) were 

outraged, and some were completely indifferent.  The Coca-Cola Company and PepsiCo 

do not attempt to win consumers over by changing the formulas of Coke and Pepsi, but 

instead have advertising wars.  As in Golman and Page (2009), the product advertising 

case is winner-takes-all if a store has shelf space for only one firm’s product.
 13

  Another 

possibility is advertising to institutional users that will sign exclusive contracts to use one 

firm’s good, such as hospitals buying all their cleaning supplies from a single supplier, or 

schools buying all their milk from a single producer because of advertising.   

In the political advertising example, the two candidates’ platforms are fixed prior 

to the beginning of the campaigns.  Each campaign seeks to alter voter preferences in 

favor of its candidate.  Since no voter is likely to prefer a single candidate’s position on 

                                                 
13

 If some customers use market ranking as a signal of quality, then a discontinuous payoff would result 

similar to the winner-takes-all setting.  A relatively small increase in advertising might increase the firm’s 

market ranking, then induce a large increase in sales through the quality perception effect. This is seen in 

Amazon, which uses a complex sales volume rating, and recommendations to customers are based on these 

ratings.  
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every issue, ads might be designed to change voter preferences in other ways.  Candidates 

might attempt to change the saliency of different issues in the minds of the voters, or 

focus on non-issue factors such as character or competence.
14

   

The theaters in either advertising case would be media markets m and n.  In the 

political case, these are different media markets in the same electoral district, such as two 

cities in the same state for a Senate race.  Market segments 1 represent consumers with a 

preference for product B or partisans for candidate B, while segments 3 prefer product or 

candidate A.   Segments 2 are the neutral consumers or voters.  Firms or candidates 

allocate advertising dollars across markets, but cannot perfectly target who will see a 

given ad within a market.  Since all sales and votes are equally important,
15

 the 

importance parameters ij simply represent numbers of consumers or voters.  1j and 3j 

are the preference intensities of the partisans for B and A, respectively.  The hij are the 

advertising effectiveness functions in the various sub-markets.  Ads might have different 

effectiveness in different media markets because of different television viewing habits or 

differences in ad prices between large and small markets.  Additionally, individuals with 

initially strong preferences toward a product or candidate might respond differently to ads 

than do initially neutral individuals. 

 

Campaign promises by political candidates 

                                                 
14

 In the political context, maximizing the probability of winning rather than expected plurality is 

considered preferable, but is often not used as it is significantly more complicated to analyze.  A number of 

papers including Aranson, Hinich and Ordeshook (1974), Ledyard (1984), Snyder (1989), Duggan (2000), 

and Patty (2007) have considered the relation between outcomes under the two objectives in a spatial 

voting context.  In some, perhaps special, circumstances, they are equivalent.  It should be noted that 

expected plurality maximization is not only more convenient but in some circumstances can be justified as 

more realistic.  Candidates with a low probability of winning may desire to lose by as small a margin as 

possible. 
15

  In the political setting, this would be true in a statewide or district-wide race.  Obviously, all votes are 

not created equal in an Electoral College setting. 
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 In the previous example, candidate competition occurs with fixed platforms.  

However, in order to win votes, candidates may promise to spend government resources 

in a way that will benefit voters in specific geographic areas, such as the choice of 

location for a new military base.  The benefits of the project will accrue to all voters in 

the geographic area, not just to a candidate’s partisans or neutral voters.  The 

interpretations of markets’ importance and intensities would be the same as in the 

political advertising case.  The effectiveness functions hij would now relate to the amount 

of benefits a project in an area would give to a particular block of voters.
16

   

 

Quality competition among providers of education 

In the final example, two private school providers compete for students by 

varying the quality of education in two districts, m and n.  A is a religious organization 

and B is a secular firm.  Quality differences are achieved by A via allocations xm and xn, 

and by B via ym and yn.  The providers wish to maximize the total number of pupils they 

serve because of economies of scale arising from such factors as reduced textbook prices 

for large orders or fixed administrative costs.   

Parents differ in their preferences for secular or religious schools.  These 

underlying preferences ij could be overcome with large enough quality differentials.  

Quality differentials are difficult to target toward pupils of one type and not another.  1, 3 

and 2 are the parent types preferring secular or religious education and the neutrals, 

respectively.  hij, the effectiveness of dollars spent on quality, might differ across 

communities because dollars buy different amounts of quality due to differences in land 

                                                 
16

 This is the setting analyzed by Lindbeck and Weibull (1987), but their model is based on probabilistic 

voting. 
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costs and prevailing wage rates, or due to differently sized physical plants.  All of these 

factors would likely be correlated with community size.  The effectiveness functions 

might also differ across parental types, as these may have different sensitivities to 

changes in quality.  The importance parameters would generally relate to the numbers of 

the different types in each community but might also incorporate desires by the schools to 

have students with certain skills (academic or athletic).  

 

In three of these four examples, each contestant would have his own independent 

budget to allocate, and there is no reason to think the two contestants would have 

identical budgets.  In the campaign promises example, though, candidates are making 

promises about future allocations of the overall government budget.  Thus, the two 

candidates have the exact same amount of resources to allocate.  This difference is 

significant since, as shown below, the results for equal and unequal resources are 

different in crucial ways.  These examples illustrate that both cases need to be considered. 

 

 (III) Pure Strategy Equilibria 

 In a Blotto game with perfect targeting, a pure strategy equilibrium generally 

exists when there are only two battlefields, with both contestants expending all their 

resources in the larger battlefield.  With imperfect targeting, even though the players have 

only two alternatives on which to spend resources, there are really more than two 

battlefields and pure strategy equilibria typically do not exist.  To analyze this, we begin 

with Lemma 1, which rules out interior pure strategy equilibria. 
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Lemma 1:  Given parameter restrictions (5) – (7), there do not exist any pure strategy 

equilibria other than xm = ym = 0 or xn = yn = 0.    

 

To specify the conditions for pure strategy equilibria, it is useful to see the 

graphical representation of the payoff functions (4), shown in Figure 2.  Define cutoff 

values �̅�1, �̅�2, �̅�3, and �̅�4 by ℎ3𝑚(�̅�1) − ℎ3𝑚(𝑅𝐵) +3m = 0, ℎ1𝑛(𝑅𝐴 − �̅�2) +1n = 0, 

ℎ1𝑚(�̅�3) +1m = 0, and ℎ3𝑛(𝑅𝐴 − �̅�4) − ℎ3𝑛(𝑅𝐵) +3n = 0  Similarly, let �̅�1, �̅�2, �̅�3, and 

�̅�4 be defined by ℎ1𝑚(𝑅𝐴) − ℎ1𝑚(�̅�1) +1m = 0, −ℎ3𝑛(𝑅𝐵 − �̅�2) +3n = 0, 

−ℎ3𝑚(�̅�3) +3m = 0, and ℎ1𝑛(𝑅𝐴) − ℎ1𝑛(𝑅𝐵 − �̅�4) +1n = 0, 

The curve connecting �̅�1 and �̅�3 shows all allocation pairs for A and B that cause 

a tie in battlefield (3, m).  For allocation pairs below that curve, A wins (3, m), while B 

wins for allocations above the curve.  Points on the curve connecting �̅�2 and �̅�4 yield a tie 

in (1, n), while A wins (1, n) above the curve, and B wins below it.  Similarly, points on 

the curves connecting �̅�3 and �̅�1 and �̅�4 and �̅�2 indicate ties in battlefields (1, m) and (3, 

n), respectively.  A wins (1, m) below the curve at �̅�3 and wins (1, n) above the curve at 

�̅�4.  The curve through (0, 0) in the figure shows the allocations at which battlefield (2, 

m) is tied, while the final curve through (RA, RB) shows the allocations leading to a tie in 

(2, n).   Payoffs to the two players in the spaces between any two curves are constant.  

That is, in such a region, a small change in allocation by either player does not change the 

payoffs. 
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The exact relation of the �̅�𝑖 and �̅�𝑗 to each other can vary, and Figure 2 only 

shows a representative case.  It is worth noting that, following from (2), (5) and (6), 0 < 

�̅�1, �̅�2, �̅�3, �̅�4 < 𝑅𝐴 and 0 < �̅�1, �̅�2, �̅�3, �̅�4 < 𝑅𝐵 must hold.
17

  

 

Theorem 1:  Under (1) – (7) and the convention that the theaters are named so that M < 

N, the only possible pure strategy equilibrium is xm = ym = 0.  This equilibrium exists if 

and only if RA = RB, 2n > 2m, and both of the following conditions hold: 

(A) Either �̅�3 < �̅�4 and 
1

2
𝜃2𝑛 >

1

2
𝜃2𝑚 + 𝜃3𝑚 or �̅�4 ≤ �̅�3 and 𝜃1𝑛 +

1

2
𝜃2𝑛 >

1

2
𝜃2𝑚 + 𝜃3𝑚 

(B) Either �̅�3 < �̅�4 and 
1

2
𝜃2𝑛 > 𝜃1𝑚 +

1

2
𝜃2𝑚 or �̅�4 ≤ �̅�3 and 

1

2
𝜃2𝑛 + 𝜃3𝑛 >

𝜃1𝑚 +
1

2
𝜃2𝑚 

 

 From Theorem 1, when each player has sufficient resources which differ from 

those of the other player but not by too much, then no pure strategy equilibrium exists.  

When RA = RB, an equilibrium exists only under further restrictions on the parameters of 

the model.  To gain some intuition behind this result, recognize that given the budget 

constraint, each player has a one-dimensional strategy space:  how much is allocated to 

theater m.  Fixing the opponent’s allocation, a player’s payoff is nonmonotonic over this 

strategy space.  As a player allocates more resources toward m, battlefields in m will 

switch allegiance to that player, while those in n switch away at different allocation 

                                                 
17

 To see these, note that the left-hand side of each equality defining the �̅�𝑖s and �̅�𝑖s is a continuous and 

strictly monotonic function of �̅�𝑖 or �̅�𝑖, respectively. Using (2). (5), and (6), it can be easily shown that at 0, 

value of each function has opposite sign to its value at the corresponding upper bound. Thus, there must be 

a value strictly between zero and the upper bound at which the value of the function is zero. 
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levels. Because of this non-monotonicity, at least one player will have an improving 

deviation over any pair of pure strategy allocations, one for each player. 

The following special case helps in understanding the conditions determining the 

relations between �̅�3 and �̅�4, and between �̅�3 and �̅�4.  Assume that effectiveness is the 

same in the battlefields of each theater, with ℎ𝑖𝑚(𝑧) = ℎ𝑚(𝑧) and ℎ𝑖𝑛(𝑧) = ℎ𝑛(𝑧), all 𝑖 

and 𝑧.  Further, assume that theater m is less important than n because it is smaller.  This 

could lead allocations to be more effective there with ℎ𝑚(𝑧) ≥ ℎ𝑛(𝑧), all 𝑧, because if 

advertising prices are related to market population, a dollar spent in a smaller market 

would buy more ads. 

 

Lemma 2: Assume (1) – (7), 𝑅𝐴 = 𝑅𝐵, and ℎ𝑚(𝑧) ≥ ℎ𝑛(𝑧). If 𝛼3𝑚 < −𝛼1𝑛, or if 

𝛼3𝑚 = −𝛼1𝑛 and ℎ𝑗
′′ < 0, then �̅�3 < �̅�4. If 𝛼3𝑛 > −𝛼1𝑚, or if 𝛼3𝑛 = −𝛼1𝑚 and ℎ𝑗

′′ < 0, 

then �̅�3 < �̅�4. 

 

 Therefore, if the more important theater n also has larger advantages (𝛼3𝑚 <

−𝛼1𝑛 and 𝛼3𝑛 > −𝛼1𝑚), then from Lemma 2 and conditions (A) and (B) of Theorem 1, 

1

2
𝜃2𝑛 >

1

2
𝜃2𝑚 + 𝜃3𝑚 and 

1

2
𝜃2𝑛 > 𝜃1𝑚 +

1

2
𝜃2𝑚 must hold at a pure strategy equilibrium.  

Together these imply that 𝜃2𝑛  >  𝑀.  Not only is theater n more important overall, its 

neutral battlefield must be more important than all of theater m.  In this case, both players 

put all their resources in the more important theater and devote no resources to the less 

important one.  If the advantage relations in Lemma 2 do not hold, the conditions on 2n 

relative to the importance of battlefields in m in Theorem 1 are still sufficient but are not 

necessary for the pure strategy equilibrium to exist.   
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Pure strategy equilibria may exist if one player’s resources are significantly larger 

than the other with assumption (6) violated.  For example, with enough resources, player 

A could set 𝑥𝑚  =  𝑥𝑛  =
1

2
𝑅𝐴 and, no matter what B did, win all battlefields in theater m 

provided ℎ1𝑚 (
1

2
𝑅𝐴) − ℎ1𝑚(𝑅𝐵) + 𝛼1𝑚 > 0, and all battlefields in theater n if 

ℎ1𝑛 (
1

2
𝑅𝐴) − ℎ1𝑛(𝑅𝐵) + 𝛼1𝑛 > 0. 

Although the formal results in Theorem 1 apply to a situation with only two 

theaters, the intuition that pure strategy equilibria are unlikely to exist carries over to 

more than two theaters.  For a pure strategy equilibrium to exist in a setting of K theaters, 

the equilibrium strategies restricted to any pair must be an equilibrium in that pair 

holding fixed allocations to all the other theaters.  Let 𝑅𝐴
𝑖𝑗

 and 𝑅𝐵
𝑖𝑗

 be the sum of resources 

allocated to theaters 𝑖 and 𝑗 by the two players.  If the players have total resources which 

do not differ much, then, on at least one pair of theaters 𝑖 and 𝑗, the resources 𝑅𝐴
𝑖𝑗

 and 𝑅𝐵
𝑖𝑗

  

will satisfy assumptions (5) and (6) with an equilibrium then unlikely on the pair. 

 

(IV) Mixed Strategy Equilibria 

In most circumstances, no pure strategy equilibrium exists and the players use 

mixed strategies.  Finding the equilibrium mixed strategies in general is difficult.  Some 

notational conventions and definitions are useful for the analysis.  Let 𝐸(𝑥𝑚) and 𝐹(𝑦𝑚) 

denote the cumulative distribution functions for the mixed strategies of A and B, 

respectively.  Let Ω𝐴 and Ω𝐵 denote the supports of the mixed strategies of A and B, 

respectively, defined as sets of values at which the corresponding CDF increases. That is 
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Ω𝐴 = {𝑥: ∀𝜀 > 0, 𝐸(𝑥 − 𝜀) < 𝐸(𝑥)} and Ω𝐵 = {𝑦: ∀𝜀 > 0, 𝐹(𝑦 − 𝜀) < 𝐹(𝑦)}.18
  We will 

derive results under the following restriction on the �̅�𝑖 and �̅�𝑗: 

 

max(�̅�1, �̅�2) < min(�̅�3, �̅�4) and max(�̅�1, �̅�2) < min(�̅�3, �̅�4)  (8) 

 

This condition will be satisfied when advantages are quite high. Situations in which this 

will be likely to hold include political contests and other contexts in which individuals 

have strong preferences.  Given (8), the open intervals Γ𝐴 ≡ (max(�̅�1, �̅�2) , min(�̅�3, �̅�4)) 

and Γ𝐵 ≡ (max(�̅�1, �̅�2) ,min(�̅�3, �̅�4)) are nonempty.  Also, let Γ ≡ Γ𝐴 ∩ Γ𝐵.  Note that if 

the resource difference between the players becomes too large,  will be empty. 

If player i chooses an allocation in the interval Γ𝑖, then, no matter what its 

opponent does, that player cannot win either of the battlefields favorable to the opponent, 

but also cannot lose either battlefield in which that player is favored.  Only the neutral 

battlefields are in play.  To see this, consider any xm such that �̅�3 > xm > �̅�2 in Figure 2.  

No matter what value of ym that B chooses, the pair of allocations is always below the 

curves through �̅�1 and �̅�2.  Therefore, A always wins battlefield (3, m) but loses (1, n).  

On the other hand, if an allocation is chosen outside the interval, there are potential gains 

and losses in these battlefields.  For example, if 𝑥𝑚   is below �̅�2, for different values of 

ym, A may win or lose (1, n).    

From these insights, we can derive bounds on the expected equilibrium payoffs of 

the players. 

                                                 
18

 Assume that E(xm) is constant below some z and then increases above that. If  E(xm) is continuous at z 

then 𝑧 ∉ Ω𝐴 since E(z – 𝜀) = E(z) would hold for small 𝜀.  If E(xm) is discontinuous at z with a mass point 

there, then 𝑧 ∈ Ω𝐴 since E(z – 𝜀) < E(z)  for any 𝜀. The same property holds for f(ym) and Ω𝐵. 
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Proposition 1. As long as  is non-empty, a player’s expected equilibrium payoff is 

greater than the sum of the importance of the less important of the neutral battlefields and 

the two battlefields that favor that player, and is smaller than sum of the importance of 

the more important neutral battlefield and the two battlefields favoring that player.  

 

We begin with the players having the same resources, since this in an important 

benchmark case.  Surprisingly, however, this turns out to be a knife-edge case.  We then 

turn to exploring situations when the candidates have different resources. 

 

1. The players have equal resources 

Let 𝑅 ≡  𝑅𝐴  =  𝑅𝐵 .  We assume that dividing the resources equally across 

theaters belongs to the intervals A and B:   

𝑅

2
∈ Γ    (9) 

Given a value of 𝑅, this assumption in effect puts lower bounds on the magnitudes of the 

ij.  These advantages cannot be too large relative to R from assumption (5).  From (8), 

they also cannot be too close to 0.    Note that (9) in at least some circumstances 

strengthens (6).  If the ℎ𝑖𝑗 are linear, then (9) implies min (−
𝛼1𝑛

𝑐1𝑛
,
𝛼3𝑚

𝑐3𝑚
) >

𝑅

2
 and 

min (−
𝛼1𝑚

𝑐1𝑚
,
𝛼3𝑛

𝑐3𝑛
) >

𝑅

2
 for some positive constants 𝑐𝑖𝑗. Hence, for 𝑅𝐴 = 𝑅𝐵, (6) only 

implies |ij| > 0 while (9) imposes the more restrictive |𝛼𝑖𝑗| >
𝑐𝑖𝑗𝑅

2
. 
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Theorem 2:  Assume parameter restrictions (5) – (9) and 𝑅𝐴 = 𝑅𝐵. Either Ω𝐴 ∩ Γ = ∅ or 

Ω𝐵 ∩ Γ = ∅, so that at least one player never expends resources in the open interval Γ. 

 

Although multiple mixed strategy equilibria may exist and it is difficult 

analytically to find the exact equilibria, Theorem 2 gives an important characterization of 

any mixed strategy equilibrium in circumstances when the resources available to the two 

players are the same.  There is no equilibrium in which both players have any probability 

of dividing their resources nearly equally between the two theaters.  This follows since 

the interval  contains  
𝑅

2
, from assumption 9.  The interval in which at least one player 

puts probability weight may be larger than  Note that the Theorem does not imply that 

even one of the players will put probability weight in In fact, if the game is 

symmetric, then neither player will ever have an approximately equal division. 

 

Corollary 1:  If −𝛼1𝑗 = 𝛼3𝑗, 𝜃1𝑗  =  𝜃3𝑗 , and ℎ1𝑗 ≡ ℎ3𝑗  for 𝑗 = 𝑚, 𝑛. Then in any mixed 

strategy equilibrium Γ ∩ (Ω𝐴 ∪ Ω𝐵) = ∅. 

 

Theorem 2 and Corollary 1
19

 still leave open several questions:  First, does any 

player ever put weight in , and if so, which player does so?  Second, how does the size 

of the interval in which at most one player puts probability weight compare to ?  To 

answer these, we numerically solve discrete approximations of the game.  The analyses 

are performed by choosing reasonable values for the parameters and linear or square root 

                                                 
19

 Corollary 1 openly violates assumption (7). However, the proof of Theorem 2 requires only 𝜃2𝑚  ≠  𝜃2𝑛 

which is not violated by Corollary 1. Thus, relaxing (7) and keeping 𝜃2𝑚  ≠  𝜃2𝑛 guarantees that the insight 

provided by Corollary 1 is correct. 
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functional forms for hij.   Our results relate to statements about the full set of equilibria, 

not just a single one.  Since it is difficult to find the full set of equilibria, we instead find 

necessary conditions on the set of equilibria.  We find a single equilibrium, which tells us 

the players’ payoffs in all equilibria, since this is a two-person constant sum game.  We 

then perturb the game slightly by adding constraints on how much or how little 

probability weight a player can put on a particular strategy, and see whether these 

constraints change the value of the game in the new equilibrium.  A full description of the 

methodology for numerically solving and details of the solutions can be found in the 

Appendix.  From the numerical analyses, we derive several numerical observations. 

Observation 1: The fraction of times a player puts weight in  increases when a 

player’s expected equilibrium payoffs are closer to the bounds in Proposition 1

Observation 2: In over 95% of the cases in which one player puts weight in 

itis the player whose expected payoff from the game is lower than the payoff yielded 

by (𝑥𝑚 = 0, 𝑦𝑚 = 0). 

Observation 3:  In over 90% of cases, the interval around equal allocation in 

which a player puts no probability weight is larger than the  interval. 

Observation 4: In over 75% of the cases, both players have a mass point 

allocating all resources to the theater with the more valuable neutral battlefield. In no 

case do both players have a mass point allocating all resources to the theater with the less 

valuable neutral battlefield.  

 

Note that once we know a mixed strategy of a player who puts weight in the Γ 

interval, it is possible to create an uncountable number of different mixed strategies for 
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that player that can be a part of a Nash Equilibrium. Since the other player distributes 

weight only outside the Γ interval, the player in question is indifferent between any two 

points inside the Γ interval. Thus, the distribution inside the Γ interval can be altered in 

any way as long as the two following conditions are satisfied: (a) the weight placed in 

this interval stays the same, and (b) the expected payoff from playing in Γ for the other 

player remains below or at the expected payoff from the entire game. An illustration of a 

mixed strategy having this property is shown in Figure 3.  

The significance of these results depends upon the size of the interval Γ.  For inf Γ 

and sup Γ near their respectively upper and lower bound of 
1

2
𝑅, the interval around 

1

2
𝑅 is 

small.  Only allocations with almost exactly equal spending in the two theaters are ruled 

out.  For Γ near its upper bound (0, 𝑅), this interval is almost the entire set of allocations.  

Anything except almost complete asymmetry in expenditures is ruled out.  The size of 

this interval thus depends upon the magnitude of the initial advantages relative to the 

resources available to the players.  The less resources players have relative to these 

advantages, the more asymmetric must be the allocations of a player.  

Throughout the analysis, we have assumed that the resources are exogenous and 

uncorrelated to the advantages ij.  However, there may be reasons for them to be 

positively or negatively correlated in some of the examples of the model.  Consider the 

case of political campaigns.   When the advantages are greater voters are less 

persuadable, so money will be less effective and donors may prefer to donate to other 

candidates in other races, yielding a negative correlation.  On the other hand, in larger 

theaters, more money is raised but ads may be more expensive, which is similar in effect 
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to having larger advantages, creating a positive correlation.
20

   Assume that sup Γ = 𝑎 +

𝑏𝑅 and inf Γ = 𝑅 − sup Γ where the sign of 𝑏 determines whether sup Γ and 𝑅 are 

positively or negatively correlated.  Then the interval becomes ((1 –  𝑏)𝑅 –  𝑎, 𝑏𝑅 +  𝑎) 

with the size of the interval 2𝑎 + (2𝑏 − 1)𝑅.  The size of this interval as a fraction of R 

declines in R.  Only if 𝑏 is near 
1

2
 and 𝑎 is near 0 will the interval be very small relative to 

R for all values of 𝑅.  Otherwise, for at least some 𝑅, it should be non-negligible in size.  

 

2.  The players have unequal resources 

An important question is whether Theorem 2 can be extended to games with small 

differences in resources. In order to investigate this issue, we run further numerical 

analyses. An example of an equilibrium mixed strategy for unequal resources is given in 

Figure 4.  

Observation 5:  When resources differ by even a small amount, both players can put 

weight near equal division.  Thus, the result in Theorem 2 appears to be knife-edge.    

Figure 2 gives some insight into this knife-edge behavior.  When RA =  RB, the 

curves through 0, 0 and RA, RB coincide, so the region between them disappears, but 

exists when RA exceeds RB by even the tiniest amount.  When the region exists, payoffs 

within it are constant.  Thus, when the region exists, no matter how small, it affects play 

because in many situations, the resource-advantaged player gains by moving into that 

region from nearby regions.   

                                                 
20

 See Stratmann (2005) for a survey of the recent campaign contributions and campaign spending 

literatures, where he discusses both of these effects.  Stratmann notes that when voter preferences are 

strong toward one candidate or the other, contributors are less likely to donate since campaign spending 

would have little effect in those markets.  He also discusses the fact that spending is likely to buy very 

different amounts of advertising in different markets.  
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The numerical analyses give insight into the shape of the cdfs E(xm) and F(ym) 

when both players have weight in .   

Observation 6: In over 95% of the cases where both players put probability 

weight in , the weight within  increases toward the theater with the more valuable 

neutral battlefield for resource-advantaged player and toward the other theater for the 

resource-disadvantaged player. That is, the CDF for one player in this range tends to be 

approximately concave, while it is approximately convex for the opponent.  

Let ∆ ≡ 𝑅𝐴 − 𝑅𝐵.  The following observation provides insights into shape of 

equilibrium mixed strategies.  

Observation 7: There appear to be two types of patterns for the CDFs when both 

players put weight in .  In approximately 80% of these cases, the support must be 

disconnected in all equilibria, with mass points or separated sets smaller than ∆.  In the 

remaining 20%, the union of the supports over all mixed strategies covers an interval 

greater than ∆.  Some of these equilibria have connected supports over an interval of 

length .   

For the latter cases described by Observation 7, we are able to formalize some 

necessary conditions on the shape of equilibrium mixed strategies for both players.   

 

Theorem 3: Assume that the open set Φ ⊂ Γ ∩ Ω𝐴 ∩ Ω𝐵is a nonempty interval with 

length greater than ∆. Then for almost all z such that 𝑧 ∈ Φ and (𝑧 + ∆) ∈ Φ, 

𝐸(𝑧+2∆)−𝐸(𝑧+∆)

𝐸(𝑧+∆)−𝐸(𝑧)
=

𝜃2𝑚

𝜃2𝑛
 and 

𝐹(𝑧+∆)−𝐹(𝑧)

𝐹(𝑧)−𝐹(𝑧−∆)
=

𝜃2𝑛

𝜃2𝑚
.  
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Within the interval there is a tendency for the pdf of A’s mixed strategy to 

decrease exponentially, at least over changes of size while B's pdf increases 

exponentially over changes of size .  This pattern holds for 2m < 2n.  If this inequality 

reverses, the pattern reverses as well.   Note that the result does not assert full 

monotonicity.  In fact, in many of the numerical analyses there is not global 

monotonicity.  For changes smaller than , A’s pdf could increase and B’s could 

decrease.  An example of this can be seen in Figure 4.  If, instead of a pdf, a histogram of 

a discrete approximation were to be graphed and the bin size for the discrete 

approximation were chosen to be , then the histogram for A would be strictly decreasing 

over the interval  while B’s would be strictly increasing.   

The unexpected difference between E(xm) and F(ym) stem from the fact that 

within Γ, players compete only for battlefields of importance 2m and 2n. The resource 

advantaged player concentrates on winning the battlefield with higher importance.  On 

the other hand, the resource disadvantaged player concentrates on assuring that the 

opponent will not get both battlefields, hence is less willing to compete for the more 

important battlefield. 

We can gain insight into our results by comparing them to those of Macdonell and 

Mastronardi (2014), who provide a complete characterization of mixed strategy equilibria 

in Blotto games consisting of exactly two battlefields, when players have unequal 

resources.  Our model essentially reduces to theirs when the advantages in the non-

neutral battlefields are either zero or become so large that a player can never win any 

battlefield initially favoring its opponent.  Any parameter combination in our model that 

induces players to fight over only the neutral battlefields would be essentially equivalent 
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to the model of Macdonell and Mastronardi.  The comparison of results between our 

model and theirs is complicated somewhat because of different tiebreaking rules.  We 

assume in expression (3) that if after play, neither player has an advantage in a battlefield, 

each has an equal probability of winning it.  Macdonell and Mastronardi, on the other 

hand, assume that such ties are broken in favor of the player with more resources overall. 

Macdonell and Mastronardi show that the support of the probability distribution 

of the equilibrium mixed strategies can be divided into equally spaced sets.  The weights 

attached to the sets are exponentially increasing towards the more valuable battlefield for 

the player with more resources, and exponentially decreasing towards the more valuable 

battlefield for the player with less resources. They also derive rules about how probability 

should be distributed within each set.  

Consider the numerical analyses discussed in Observation 7.  Those with a 

disconnected support conform to the distributions derived by Macdonnell and 

Mastronardi, in the sense that for at least one player, the weight placed in Γ is distributed 

over equally spaced intervals in an exponentially decreasing or increasing fashion.  The 

cases with disconnected support could differ from the Macdonnell and Mastronardi 

distributions for two possible reasons: we have a different tiebreaking rules, and we 

assume the existence of non-neutral battlefields.  We run numerical analyses on their 

two-battlefield model with our tiebreaking rule, and these yield at least one player with a 

disconnected support.  See Figure 5 for an example of this.
21

   This strongly suggests that 

the existence of the non-neutral battlefields is creating the difference in results. 

                                                 
21

 In the two-battlefield case, the different tiebreaking rule changes which player has the disconnected 

support.  In their model, the player with more resources will have a set of mass points and no continuous 

distribution.  Meanwhile, the player with fewer resources can distribute probability over almost all points of 

the potential support.  When the tie rule changes, the situation of the players reverses. 
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One important result implicit in Macdonell and Mastronardi is that the resource 

constraint in the two-battlefield Blotto game is hardly ever binding. In other words, as the 

resources of one player increase, the expected payoff to this player remains constant 

except for a countable set of points when it jumps up.
22

 An important application of this 

“slackness” is the discussion in the public choice literature of rent-seeking candidates, 

who extract resources for personal benefit at the cost of lowering their expected vote or 

probability of winning.  In the two-battlefield game described here, one candidate can, in 

many cases, extract resources without such a cost.   

Additional numerical analyses explore whether this important property continues 

to hold in the presence of additional non-neutral battlefields.  We conduct experiments in 

which the payoff function has two variants: a “regular variant” as depicted in Figure 2, 

and a “simple variant” in which advantages are increased so much so that the function is 

constant above the 𝑥𝑚 = 𝑦𝑚 line and below the 𝑥𝑚 = 𝑦𝑚 + Δ line.  That is, in the simple 

variant, battlefields 1 and 3 drop out, and the model is equivalent to that of Macdonell 

and Mastronardi, with our tiebreaking rule.
23

  See Figure 6 for an illustration of the 

differences between these two variants.  

Observation 8. In more than 75% of the experiments, there is an interval whose 

length is at least the distance between grid points over which A’s expected payoff does 

not change with changes in A’s resources.  

Observation 8 suggests that slackness is very common.  That is, for most possible 

sets of parameters there are regions in which increasing the resources for one player does 

                                                 
22

 Our simulations show this largely remains true for the alternative tie rule. The only difference is that the 

jump happens earlier by one point using Macdonell and Mastronardi’s tie rule.  That is, the expected payoff 

is a right continuous function of resources using their tie rule and left continuous using ours. 
23

 Alternative ways of obtaining the simple variant are to set advantages 𝛼𝑖𝑗 = 0 or 𝜃1𝑗 = 𝜃3𝑗 = 0. 
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not benefit that player. Figure 7 shows the expected payoffs of one player as a function of 

that player’s available resources. The figure superimposes five variants which differ only 

in the size of the advantages. There are two simple variants.  In the first, advantages are 

so large that the players are effectively battling only for the neutral battlefields. In the 

second, advantages are zero, so that players are battling for entire theaters. The three 

regular cases include one that satisfies assumptions (1)-(7), as well as two other cases in 

which advantages are made too close to zero to satisfy assumptions (1)-(7).  As the 

Figure shows, there is a flat interval in each variant. 

Finally, most other Blotto models consider only linear effectiveness functions, 

while we allow for nonlinearity.  In particular, we consider both linear and square root h 

functions in our numerical analyses.  It is interesting to compare the results under the two 

specifications. 

Observation 9. The results in the two specifications are roughly similar, with two 

important differences.  Having a connected support when both players have weight in  

is less likely in the nonlinear specification, and slackness occurs 100% of the time in the 

square root and only about 60% of the time in the linear specification. 

Observation 9 suggests that the choice of functional form for effectiveness can be 

significant.  In fact, slackness seems to be related to the linearity of the h function.  See 

Figure 2 for the intuition behind this idea.  In the simple game, the curves connecting the 

cutoffs �̅�1 to �̅�4 and �̅�1 to �̅�4 in the Figure do not exist, so the players are unconcerned 

about what happens in the non-neutral battlefields.  How concerned they are about these 

battlefields increases with the area between those curves and the corners.  If the h 

functions are concave, then the curves will bow toward the corners, and there will be less 
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area under them than in the linear case.  Thus, the non-neutral battlefields will have less 

impact on the equilibria.  When the h functions are convex, the curves bow away from 

the corners, making the non-neutral battlefields more important. 

 

(V) Conclusions 

Standard Colonel Blotto games assume perfect targeting of theaters.  Our 

extension of the model adds the realistic feature that players can target battlefields only 

imperfectly, so that actions targeted toward one battlefield can impact others.  In 

particular, we study a polar case where some battlefields are grouped together, and 

cannot be targeted separately.  Each of them receives the same allocation, although they 

may be impacted differently by it.  The battlefields in a grouping may differ in their 

importance and in whether one of the players has an advantage over the other in them.  

We show that pure strategy equilibria will exist only in extreme circumstances 

and when they do, the players will choose very asymmetric allocations across groupings.  

We then derive a necessary condition for mixed strategy equilibria when the players have 

the same amount of resources to allocate, and this amount lies between upper and lower 

bounds that depend upon the magnitude of the advantages that one player has over the 

other. This condition shows that at least one player must utilize asymmetric strategies, 

putting no probability weight in an interval around equal allocations to the two theaters.  

This does not occur under probabilistic voting, even when players have equal resources, 

as shown in Fletcher and Slutsky (2011). 

However, when resources differ, even by an arbitrarily small amount, the players 

can be much more symmetric in their allocations across the two theaters.  Some of our 
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results about the nature of the players’ probability distributions around equal allocation 

may be empirically testable.  For example, the resource-disadvantaged candidate tends to 

tilt his allocation toward the smaller neutral battlefield, while the resource-advantaged 

candidate tends to tilt her allocation toward the larger neutral battlefield.  In addition, 

players can often decrease the resources allocated to a theater without decreasing their 

expected payoffs.  This “slackness” property would imply that the function relating 

expenditures in political campaigns to the outcome may have flat regions.   

  Recently, Mastronardi and Macdonnell (2014) analyze results for a Blotto game 

with two completely neutral battlefields.  In their simpler context, the probability 

distributions of the mixed strategies are placed in discrete, equally spaced sets.  Our 

results show that when imperfectly targeted battlefields exist where one player or another 

has a pre-battle advantage, the support can become more continuous.   
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Appendix 1:  Proofs 

 

Proof of Lemma 1: Assume that 𝑦𝑚 ≠ 𝑥𝑚 ≤
𝑅𝐴

2
< 𝑅𝐵. Note that consistent with (4) and 

(7) we have 𝑓(𝑥𝑚, 𝑦𝑚) ≠ 𝑓(𝑥𝑚, 𝑥𝑚) and 𝑓(𝑥𝑚, 𝑦𝑚) ≠ 𝑓(𝑦𝑚, 𝑦𝑚). Moreover, if (𝑥𝑚, 𝑦𝑚) 

is a Nash Equilibrium, than 𝑓(𝑥𝑚, 𝑦𝑚) < 𝑓(𝑥𝑚, 𝑥𝑚) and 𝑓(𝑥𝑚, 𝑦𝑚) > 𝑓(𝑦𝑚, 𝑦𝑚). Note 

that both at (𝑥𝑚, 𝑥𝑚) and at (𝑦𝑚, 𝑦𝑚) player A wins battlefield (1,m), player B wins 

battlefield (3,m) and there is a tie in battlefield (2,m). Player B wins battlefield (1,n) if 

and only if ℎ1𝑛(𝑥𝑛) − ℎ1𝑛(𝑦𝑛) < −𝛼1𝑛. Note however that by (2) we have ℎ1𝑛(𝑥𝑛) −

ℎ1𝑛(𝑦𝑛) ≤ ℎ1𝑛(𝑥𝑛 − 𝑦𝑛) = ℎ1𝑛(𝑅𝐴 − 𝑥𝑚 − 𝑅𝐵 + 𝑦𝑚). Given that we are considering 

players playing the same strategy in theater m, by (6) we have ℎ1𝑛(𝑥𝑛) − ℎ1𝑛(𝑦𝑛) ≤

ℎ1𝑛(𝑅𝐴 − 𝑅𝐵) < −𝛼1𝑛. Therefore Player B wins battlefield (1,n). Player A wins 

battlefield (2,n) if 𝑅𝐴 > 𝑅𝐵 or ties otherwise. Player A wins battlefield (3,n) because 

ℎ3𝑛(𝑥𝑛) − ℎ3𝑛(𝑦𝑛) ≥ 0 and 𝛼3𝑛 > 0. Therefore both at (𝑥𝑚, 𝑥𝑚) and at (𝑦𝑚, 𝑦𝑚) 

players win or tie at the same battlefields. Thus 𝑓(𝑦𝑚, 𝑦𝑚) = 𝑓(𝑥𝑚, 𝑥𝑚) which 

contradicts 𝑓(𝑥𝑚, 𝑥𝑚) > 𝑓(𝑦𝑚, 𝑦𝑚). 

For 𝑦𝑛 ≠ 𝑥𝑛 ≤
𝑅𝐴

2
, a comparison of 𝑓(𝑅𝐴 − 𝑥𝑛, 𝑅𝐵 − 𝑦𝑛) to 𝑓(𝑅𝐴 − 𝑥𝑛, 𝑅𝐵 − 𝑥𝑛) 

and 𝑓(𝑅𝐴 − 𝑦𝑛, 𝑅𝐵 − 𝑦𝑛) leads to an analogous contradiction.   

If 𝑦𝑚 = 𝑥𝑚 ≠ 0 or 𝑦𝑛 = 𝑥𝑛 ≠ 0, then there is a tie in battlefield (2,m) or (2,n) 

respectively. There exists 𝜀 > 0 such that player A playing 𝑥𝑚 − 𝜀 and 𝑥𝑚 + 𝜀 results in 

resolving the tie in two opposite ways without changing the winner of the other 

battlefields. Since (7) ensures strict monotonicity of the sequence 𝑓(𝑥𝑚 − 𝜀, 𝑦𝑚), 

𝑓(𝑥𝑚, 𝑦𝑚), and 𝑓(𝑥𝑚 + 𝜀, 𝑦𝑚), 𝑥𝑚 is not the best response to 𝑦𝑚. Hence (𝑥𝑚, 𝑦𝑚) is not 

a Nash Equilibrium.  
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The only cases not considered above are 𝑥𝑚 = 𝑦𝑚 = 0 and 𝑥𝑛 = 𝑦𝑛 = 0; all other 

possible combinations of 𝑥𝑚 and 𝑦𝑚 do not lead to a Nash Equilibrium.  Q.E.D. 

 

Proof of Theorem 1: From Lemma 1, a pure strategy equilibrium must have 𝑥𝑚 = 𝑦𝑚 =

0 or 𝑥𝑛 = 𝑦𝑛 = 0. Note that if 𝑅𝐴 > 𝑅𝐵 neither 𝑥𝑚 = 𝑦𝑚 = 0 nor 𝑥𝑛 = 𝑦𝑛 = 0 is a Nash 

Equilibrium because there exists 𝜀 > 0 such that by playing 𝑥𝑚 ± 𝜀 a tie on battlefield 

(2,m) or (2,n) is resolved in A’s favor, while on other battlefields the winner does not 

change. That is 𝑓(𝜀, 0) > 𝑓(0,0) or 𝑓(𝑅𝐴 − 𝜀, 𝑅𝐵) > 𝑓(𝑅𝐴, 𝑅𝐵). Lemma 1 rules out other 

possibilities, hence there is no Pure Strategy Nash Equilibrium if 𝑅𝐴 > 𝑅𝐵. 

Assume 𝑅𝐴 = 𝑅𝐵 = 𝑅 and 𝑥𝑛 = 𝑦𝑛 = 0 is a Nash Equilibrium. (7) ensures that 

𝑓(0, 𝑅) < 𝑓(𝑅, 𝑅) and 𝑓(𝑅, 0) > 𝑓(𝑅, 𝑅). Note that these inequalities imply respectively 

that 𝜃1𝑛 + 𝜃1𝑚 +
1

2
𝜃2𝑛 +

1

2
𝜃2𝑚 > 𝜃1𝑛 + 𝜃2𝑛 + 𝜃3𝑛 ⇒ 𝜃1𝑚 +

1

2
𝜃2𝑚 >

1

2
𝜃2𝑛 + 𝜃3𝑛, and 

𝜃1𝑚 + 𝜃2𝑚 + 𝜃3𝑚 > 𝜃1𝑛 + 𝜃1𝑚 +
1

2
𝜃2𝑛 +

1

2
𝜃2𝑚 ⇒

1

2
𝜃2𝑚 + 𝜃3𝑚 > 𝜃1𝑛 +

1

2
𝜃2𝑛. After 

adding these inequalities, we obtain 𝜃1𝑚 + 𝜃2𝑚 + 𝜃3𝑚 > 𝜃1𝑛 + 𝜃2𝑛 + 𝜃3𝑛 which 

contradicts our naming convention under which 𝑀 < 𝑁. Hence 𝑥𝑛 = 𝑦𝑛 = 0 cannot be a 

Nash Equilibrium. 

Consider 𝑥𝑚 = 𝑦𝑚 = 0. 𝑥𝑚 = 0 is the best response to 𝑦𝑚 = 0 if and only if 

𝑓(0,0) > 𝑓(𝑥, 0) for any 0 < 𝑥 ≤ 𝑅 (strict inequality is ensured by (7)). Note that 

𝑓(𝑥, 0) is constant with respect to x within the intervals (0,min(�̅�3, �̅�4)), 

(min(�̅�3, �̅�4) ,max(�̅�3, �̅�4)), and (max(�̅�3, �̅�4) , 𝑅]. The values of x for which there is a 

tie are not interesting because the function 𝑓 takes on a higher value in their 

neighborhood. Thus, we need to consider only four inequalities. For 𝑥 < min(�̅�3, �̅�4) we 

have (a) 
1

2
𝜃2𝑚 +

1

2
𝜃2𝑛 + 𝜃3𝑚 + 𝜃3𝑛 > 𝜃2𝑚 + 𝜃3𝑚 + 𝜃3𝑛 ⇒ 𝜃2𝑛 > 𝜃2𝑚. For 𝑥 >
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max(�̅�3, �̅�4) we have (b) 
1

2
𝜃2𝑚 +

1

2
𝜃2𝑛 + 𝜃3𝑚 + 𝜃3𝑛 > 𝜃1𝑚 + 𝜃2𝑚 + 𝜃3𝑚 ⇒

1

2
𝜃2𝑛 +

𝜃3𝑛 > 𝜃1𝑚 +
1

2
𝜃2𝑚.  If �̅�3 < �̅�4 then for 𝑥 ∈ (min(�̅�3, �̅�4) , max(�̅�3, �̅�4)) we have (c) 

1

2
𝜃2𝑚 +

1

2
𝜃2𝑛 + 𝜃3𝑚 + 𝜃3𝑛 > 𝜃1𝑚 + 𝜃2𝑚 + 𝜃3𝑚 + 𝜃3𝑛 ⇒

1

2
𝜃2𝑛 > 𝜃1𝑚 +

1

2
𝜃2𝑚. If 

�̅�4 < �̅�3 then for 𝑥 ∈ (min(�̅�3, �̅�4) ,max(�̅�3, �̅�4)) we have (d) 
1

2
𝜃2𝑚 +

1

2
𝜃2𝑛 + 𝜃3𝑚 +

𝜃3𝑛 > 𝜃2𝑚 + 𝜃3𝑚 which is always true if (a) is true. Note that (c) implies (a) and (b). 

Therefore 𝑥𝑚 = 0 can be the best response only if �̅�3 < �̅�4 and (c) or �̅�4 ≤ �̅�3 and (a) and 

(b). 

Analogously, 𝑦𝑚 = 0 is the best response to 𝑥𝑚 = 0 if and only if 𝑓(0,0) < 𝑓(0, 𝑦) for 

any 0 < 𝑦 ≤ 𝑅. For 𝑦 < min(�̅�3, �̅�4) we have (e) 
1

2
𝜃2𝑚 +

1

2
𝜃2𝑛 + 𝜃3𝑚 + 𝜃3𝑛 < 𝜃2𝑛 +

𝜃3𝑚 + 𝜃3𝑛 ⇒ 𝜃2𝑚 < 𝜃2𝑛.  For 𝑦 > max(�̅�3, �̅�4) we have (f) 
1

2
𝜃2𝑚 +

1

2
𝜃2𝑛 + 𝜃3𝑚 +

𝜃3𝑛 < 𝜃1𝑛 + 𝜃2𝑛 + 𝜃3𝑛 ⇒
1

2
𝜃2𝑚 + 𝜃3𝑚 < 𝜃1𝑛 +

1

2
𝜃2𝑛. If �̅�3 < �̅�4 then for 𝑦 ∈

(min(�̅�3, �̅�4) ,max(�̅�3, �̅�4)) we have (g) 
1

2
𝜃2𝑚 +

1

2
𝜃2𝑛 + 𝜃3𝑚 + 𝜃3𝑛 < 𝜃2𝑛 + 𝜃3𝑛 ⇒

1

2
𝜃2𝑚 + 𝜃3𝑚 <

1

2
𝜃2𝑛. If �̅�4 < �̅�3 then for 𝑦 ∈ (min(�̅�3, �̅�4) ,max(�̅�3, �̅�4)) we have (h) 

1

2
𝜃2𝑚 +

1

2
𝜃2𝑛 + 𝜃3𝑚 + 𝜃3𝑛 < 𝜃1𝑛 + 𝜃2𝑛 + 𝜃3𝑚 + 𝜃3𝑛 ⇒

1

2
𝜃2𝑚 < 𝜃1𝑛 +

1

2
𝜃2𝑛 which is 

always true if (e) is true. Note that (g) implies (e) and (h). Therefore 𝑦𝑚 = 0 is the best 

response only if �̅�3 < �̅�4 and (g) or �̅�4 ≤ �̅�3 and (e) and (f).  Q.E.D. 

 

Proof of Lemma 2:  Let 𝑅𝐴 = 𝑅𝐵 = 𝑅. By definition ℎ𝑚(�̅�3) = 𝛼3𝑚 and ℎ𝑛(𝑅) −

ℎ𝑛(𝑅 − �̅�4) = −𝛼1𝑛, so 𝛼3𝑚 < −𝛼1𝑛 implies ℎ𝑚(�̅�3) < ℎ𝑛(𝑅) − ℎ𝑛(𝑅 − �̅�4). By 

assumption ℎ𝑚(�̅�3) ≥ ℎ𝑛(�̅�3). Assume �̅�3 ≥ �̅�4. Then, by concavity of ℎ we have 

ℎ𝑛(�̅�3) ≥ ℎ𝑛(�̅�4) − ℎ𝑛(0) ≥ ℎ𝑛(𝑅) − ℎ𝑛(𝑅 − �̅�4) > ℎ𝑚(�̅�3) ≥ ℎ𝑛(�̅�3) which is a 
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contradiction. Thus �̅�3 < �̅�4. If 𝛼3𝑚 = −𝛼1𝑛 and ℎ𝑗
′′ < 0, assuming that �̅�3 ≥ �̅�4 leads to 

ℎ𝑛(�̅�3) ≥ ℎ𝑛(�̅�4) − ℎ𝑛(0) > ℎ𝑛(𝑅) − ℎ𝑛(𝑅 − �̅�4) = ℎ𝑚(�̅�3) ≥ ℎ𝑛(�̅�3) which is also a 

contradiction. Thus �̅�3 < �̅�4. An identical argument holds showing �̅�3 < �̅�4.  Q.E.D. 

 

Proof of Proposition 1:  Playing within the interval Γ guarantees that a player wins the 

battlefields that favor him, in addition to winning at least the value of the less important 

neutral battlefield. Since this is a constant sum game, the lower and upper bounds in the 

proposition must hold as a necessary condition for equilibrium. Assume that the 

boundaries are attained and player 𝑖 has an expected value from the game equal to the 

sum of the battlefields that favor her and the more important neutral battlefield, and the 

other player, 𝑗, receives a payoff from the game equal to the sum of the battlefields that 

favor him and the less important neutral battlefield. Then, every strategy in the Γ interval 

must give player 𝑗 a payoff equal to his lower bound. 

Assume that 𝜃2𝑛 > 𝜃2𝑚. Then, player 𝑖 can never expend resources in the Γ 

interval nor at or above sup Γ, because this gives player 𝑗 an opportunity to win 

battlefield 𝜃2𝑛 (the more important neutral battlefield) with a positive probability while 

playing in the Γ interval. Thus, player 𝑖 plays strategies only at or below inf Γ. This, 

however, allows player 𝑗 to play strategy 0, which wins both favored battlefields, and ties 

or wins 𝜃2𝑛 with positive probability.  Thus, it produces an expected payoff greater than 

the lower bound. This contradicts that the lower boundary is attained. The fact that the 

lower bound is never attained implies that the upper bound is never attained, since it is a 

zero sum game and the two bounds sum to the total value of the game.   Similar 

reasoning holds for 𝜃2𝑛 > 𝜃2𝑚.  Q.E.D. 



 

37 

 

Proof of Theorem 2: From condition (7), 𝜃2𝑛 = 𝜃2𝑚 is ruled out.  Consider  𝜃2𝑛 >

𝜃2𝑚 with a similar argument following if 𝜃2𝑛 < 𝜃2𝑚.  Let  𝐼𝐴 = Γ ∩ Ω𝐴 and 𝐼𝐵 = Γ ∩

Ω𝐵 denote the points in Γ at which A and B respectively have positive weight.  Assume 

that both players A and B put positive weight within Γ, so that 𝐼𝐴 ≠ ∅ and 𝐼𝐵 ≠

∅.  Let 𝑏 = inf 𝐼𝐵 be the lower limit of 𝐼𝐵. From footnote 17 in the text, 𝑏 ∈ 𝐼𝐵with 

𝐼𝐵 closed from the left  if F(ym) is discontinuous at b and  

𝑏 ∉ 𝐼𝐵with 𝐼𝐵 open from the left  if F(ym) is continuous at b.  If 𝑏 ∉ 𝐼𝐵,  then player A’s 

expected payoff strictly decreases with 𝑥𝑚 > 𝑏 in the neighborhood of 𝑏 and weakly 

decreases as 𝑥𝑚 increases further as long as 𝑥𝑚 ∈ Γ. If 𝑏 ∈ 𝐼𝐵, playing 𝑥𝑚 = 𝑏 − 𝜀 (such 

that 𝑏 − 𝜀 ∈ Γ) makes player A better off than playing any 𝑥𝑚 > 𝑏. These two conditions 

on A’s expected payoffs follow from the fact that the lower is the 𝑥𝑚 chosen by player A, 

the higher are A’s chances of winning 𝜃2𝑛relative to 𝜃2𝑚 . Since A cannot put positive 

probability on xm’s with lower expected payoffs, each of these two conditions implies 

that, within Γ, A will not put positive probability at values above b. Hence, sup 𝐼𝐴 ≤

inf 𝐼𝐵. Similarly, for 𝑎 = inf 𝐼𝐴, it follows that player B is better off by playing values that 

are just below 𝑎 or equal to 𝑎, if possible, as opposed to playing any 𝑦𝑚 > 𝑎 for 𝑦𝑚 ∈ Γ. 

This implies that sup 𝐼𝐵 ≤ inf 𝐼𝐴. These two inequalities on the infimums and 

supremums of 𝐼𝐴and 𝐼 𝐵  imply in turn that 𝐼𝐴 = 𝐼𝐵 = {𝑐} where 𝑐 is a single mass point 

such that 𝑐 ∈  Γ. Note, however, that if player A were to play 𝑥𝑚 = 𝑐, then player B 

would have gained by playing a ym smaller than c since this would  increase B’s chances 

of winning (n, 2).  Hence, both of them playing c cannot be a mixed strategy equilibrium 

and both players putting weight in Γ is ruled out.  Q.E.D. 
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Proof of Corollary 1:  Assume there exists a mixed strategy equilibrium in which one of 

the players, say A, has positive probability of choosing an 𝑥𝑚, inside the interval Γ, so 

that Γ ∩ Ω𝐴 ≠ ∅. Denote this equilibrium strategy for A as 𝑆𝐴.  Then, because the game 

is symmetric, there must exist another equilibrium with B having Γ ∩ Ω𝐵 ≠ ∅.  Call this 

strategy 𝑆𝐵.  Since this is a two-person constant sum game, if a strategy for one player is 

ever part of an equilibrium, then it forms an equilibrium with any strategy ever an 

equilibrium for the other player.  Hence, the pair (𝑆𝐴, 𝑆𝐵) would form an equilibrium 

with both players being in the interval Γ with positive probability, contradicting Theorem 

2.  Q.E.D. 

 

Proof of Theorem 3:  Choose any point 𝑧 s.t. 𝑧, 𝑧 + ∆∈ Φ. Since Player B plays both of 

these strategies, they must yield the same expected value. Using Lebesgue integrals: 

∫ 𝑓(𝑥, 𝑧)𝑑𝐸(𝑥)
𝑅𝐴

0

= ∫ 𝑓(𝑥, 𝑧 + ∆)𝑑𝐸(𝑥)
𝑅𝐴

0

 

∫ [𝑓(𝑥, 𝑧) − 𝑓(𝑥, 𝑧 + ∆)]𝑑𝐸(𝑥)
𝑅𝐴

0

= 0 

Note that 

𝑓(𝑥, 𝑧) − 𝑓(𝑥, 𝑧 + ∆) =

{
 
 
 
 
 

 
 
 
 
 

0 𝑖𝑓 𝑥 < 𝑧
𝜃2𝑚
2

𝑖𝑓 𝑥 = 𝑧

𝜃2𝑚 𝑖𝑓 𝑧 < 𝑥 < 𝑧 + ∆
𝜃2𝑚 − 𝜃2𝑛

2
𝑖𝑓 𝑥 = 𝑧 + ∆

−𝜃2𝑛 𝑖𝑓 𝑧 + ∆< 𝑥 < 𝑧 + 2∆

−
𝜃2𝑛
2

𝑖𝑓 𝑥 = 𝑧 + 2∆

0 𝑖𝑓 𝑥 > 𝑧 + 2∆
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By the choice of 𝑧 and 𝑧 + ∆, only battlefields (2,m) and (2,n) come into play as 𝑥 

changes. Hence, if 𝑥 < 𝑧, 𝑓(𝑥, 𝑧) = 𝜃3𝑚 + 𝜃2𝑛 + 𝜃3𝑛. If 𝑥 = 𝑧, 𝑓(𝑥, 𝑧) =
𝜃2𝑚

2
+ 𝜃3𝑚 +

𝜃2𝑛 + 𝜃3𝑛. If 𝑥 ∈ (𝑧, 𝑧 + ∆), 𝑓(𝑥, 𝑧) =  𝜃2𝑚 + 𝜃3𝑚 + 𝜃2𝑛 + 𝜃3𝑛.  If 𝑥 = 𝑧 + ∆, 

𝑓(𝑥, 𝑧) =  𝜃2𝑚 + 𝜃3𝑚 +
𝜃2𝑛

2
+ 𝜃3𝑛. If 𝑥 > 𝑧 + ∆, 𝑓(𝑥, 𝑧) = 𝜃2𝑚 + 𝜃3𝑚 + 𝜃3𝑛. 𝑓(𝑥, 𝑧 +

∆) is defined analogously by substituting 𝑧 + ∆ for 𝑧. Since 𝑧 + ∆< 𝑅𝐵 and 𝑅𝐴 = 𝑅𝐵 + ∆ 

it follows that 𝑧 + 2∆< 𝑅𝐴, so the integrated function is well defined for any 𝑧, 𝑧 + ∆∈ Φ 

by the formula above.  

The set of mass points has measure zero. Therefore, for almost all 𝑧 there will be 

no mass points at 𝑧, 𝑧 + ∆, and 𝑧 + 2∆. Hence, for almost all 𝑧 

∫ [𝑓(𝑥, 𝑧) − 𝑓(𝑥, 𝑧 + ∆)]𝑑𝐸(𝑥)
𝑅𝐴

0

= 𝜃2𝑚[𝐸(𝑧 + ∆) − 𝐸(𝑧)] − 𝜃2𝑛[𝐸(𝑧 + 2∆) − 𝐸(𝑧 + ∆)] = 0 

𝜃2𝑚[𝐸(𝑧 + ∆) − 𝐸(𝑧)] = 𝜃2𝑛[𝐸(𝑧 + 2∆) − 𝐸(𝑧 + ∆)] 

𝐸(𝑧 + 2∆) − 𝐸(𝑧 + ∆)

𝐸(𝑧 + ∆) − 𝐸(𝑧)
=
𝜃2𝑚
𝜃2𝑛

< 1 

The inequality for the mixed strategy of player B can be proved analogously. The only 

difficulty can come from the fact that in general 𝑧 − Δ can be negative. The remedy is to 

simply assume 𝑧 − Δ < 0 ⟹ 𝐹(𝑧 − Δ) = 0.  Q.E.D. 
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Appendix 2:  Details of the numerical analyses 

Methodology 

To augment the analytical results, we perform numerical analyses of discrete 

approximations of the game. The original game is characterized by a payoff function 

𝑓(𝑥𝑚, 𝑦𝑚), specified in equation (4).  This function is mapped into a payoff matrix 

𝐹𝑅𝑒𝑠𝐵 × 𝑅𝑒𝑠𝐴, where ResB and ResA are the number of rows and columns in the discrete 

approximation of the game, and thus describe the fineness of the matrix.  Two types of 

mappings have been used to check for robustness: (a) a “boundary mapping” for which 

𝐹𝑖𝑗 = 𝑓 (
(𝑗−1)𝑅𝐴

𝑅𝑒𝑠𝐴−1
,
(𝑖−1)𝑅𝐵

𝑅𝑒𝑠𝐵−1
) and (b) a “middle mapping” for which 

𝐹𝑖𝑗 = 𝑓 (
(𝑗−0.5)𝑅𝐴

𝑅𝑒𝑠𝐴
,
(𝑖−0.5)𝑅𝐵

𝑅𝑒𝑠𝐵
), 1 ≤ i  ≤ ResB, 1 ≤ j  ≤ ResA.  Thus, the boundary mapping 

includes the extreme cases of all resources going to a single theater, while for the middle 

mapping, each theater gets at least 
𝑅𝐾

𝑅𝑒𝑠𝐾
. 

Since this is a two-player zero-sum game, we solve using the mini-max theorem.  

To find the mixed strategy equilibrium for Player B, probabilities are assigned to each 

row of the matrix 𝐹 so that the largest dot product of the probability vector and any 

column vector is minimized. Similarly, for Player A, probabilities are assigned to each 

column so that the smallest dot product of the probability vector and any row vector is 

maximized. 

Multiple equilibria often exist in this game, and it would be computationally 

intensive to explicitly solve for all of them.  Instead, the following procedure allows us to 

explore the structure of the full set of equilibrium mixed strategies.  Since all equilibrium 

mixed strategies must yield the same payoff, we begin by finding a single equilibrium, 



 

41 

which gives us the expected payoff for any equilibrium.  Then, we impose additional 

constraints to the linear programming problem in different ways to see if the expected 

payoff changes under those constraints.  We use this procedure to investigate several 

important properties of the set of equilibrium mixed strategies:  

(a) Can a particular row or column be in the support?  To answer this question, we 

impose the constraint that the probability for that row or column is no smaller than 𝜀, 

which is usually set at 0.00001.  If the solution under the additional constraint yields a 

different value of the payoff than in the unconstrained problem, then no equilibrium 

mixed strategy can put positive probability on that i or j.  If the payoff does not change, 

there exists at least one equilibrium mixed strategy with weight at that i or j.   

(b) Must a particular row or column be in the support? To answer this, we impose 

that the probability weight at i or j must be zero.  If this constraint changes the value of 

the objective function, the answer is yes.  Otherwise, there are equilibria with zero weight 

at that i or j. 

(c) What is the maximum possible probability weight that can be placed in a given 

interval?  We consider the intervals [0.45, 0.55], [0.4,0.6], and [0.3,0.7] for symmetric 

allocations, where the bounds of the intervals represent the fraction of the total resources 

available to the player, and [0,0.1], [0.9,1] for asymmetric allocations.  For each of these 

intervals, the solver is run iteratively.  Each iteration requires that the sum of probabilities 

in the interval be at least 0.01 greater than in the previous iteration. Once this condition 

changes the value of the objective function, the iterative process stops, and the previous 

attained value is the maximum possible weight in the interval. 
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(d) Must probability weight fall in the intervals [0.45, 0.55] and [0.4, 0.6]?  To 

impose this, we impose zero weight in the interval.  If the value of the objective function 

changes under this constraint, the answer is yes, and no otherwise.   

We implement this process using the Gurobi 4.51 linear optimization software 

and a Visual C++ program.  The program accepts data about the game, including the 

importance and advantages of battlefields, the nature of the h functions, and the amount 

of resources for each player.  It also accepts simulation details, including whether the 

boundary or middle mapping is used, the dimensions of the 𝐹 matrix, the value of 𝜀, 

which variable to change and by how much, and the number of changes to make. Thus, 

with a single line of input, the program allows us to observe how equilibrium mixed 

strategies change as one or more parameters are changed.  Input can be organized into a 

CSV file so that multiple experiments can be run without supervision overnight. 

During this process, the program creates linear optimization problems in a text 

file and iteratively calls Gurobi to solve them. In cases where Gurobi fails or produces 

inconsistent results, this information is included in the final report.  In our numerical 

analyses, Gurobi very rarely failed for dimensions of the F matrix not exceeding 100. For 

dimensions exceeding 100, failures were more common, and increased quickly with 

increased resolution, rendering it impractical to use dimensions of 200 or higher.  Based 

on the information given by Gurobi, the program constructs graphs depicting sample 

equilibrium mixed strategies as well as payoff matrices, and assembles them into a report 

that includes information on parameters, Gurobi failures, and simulation results for easy 

comparison.  
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In our numerical analyses, solving a single optimization problem took an average 

of 0.7 seconds. Complete characterization of the equilibrium mixed strategies with 

typical settings required 700-1100 problems to solve.  Overall, the results in this paper 

required solving approximately 500,000 optimization problems. 

Selected results of our numerical analyses using Gurobi as the solver have been 

compared to results obtained with different linear optimization software, especially Excel 

Solver, to check for robustness.  All source codes as well as all data used for experiments 

and reports generated by the program are available upon request. 

 

Results 

We perform three separate experiments.  In each of these, 200 sets of parameters 

are used, with ℎ(𝑥) = 𝑥 for half and ℎ(𝑥) = √𝑥 for the other half.  Each of these two 

groups is further divided into two subgroups of 50, with one subgroup using the boundary 

mapping and the other using the middle mapping. 

 

Experiment 1:  Equal Resources 

Numerical Observations 1 – 4 come from the same experiment.  The boundary 

mapping has a resolution of 51x51, while the middle mapping has a resolution of 50x50.  

The parameters are generated according to the following rules: 

𝑅𝐴 = 𝑅𝐵 = 1, 𝜃𝑖𝑗~𝑈[0.1,1), 𝛼𝑖𝑗~𝑈[0.6,1) for ℎ(𝑥) = 𝑥 and 𝛼𝑖𝑗~𝑈[√0.6, 1) for 

ℎ(𝑥) = √𝑥. That is, the importance and advantage parameters are drawn from a uniform 

distribution over the relevant interval.  The condition on advantages ensures that Γ ⊃

(0.4,0.6).  
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To analyze circumstances when neither player puts weight in the interval Γ, we 

construct two variables: (A) an indicator variable equaling 1 if there are equilibrium 

strategies with weight in the Γ interval for the given set of parameters, and 0 otherwise, 

and (B) 
2|𝑣−�̅�|

𝑏−𝑎
, where 𝑎 is the sum of the importance assigned to the battlefields favoring 

player A and the less valuable neutral battlefield, 𝑏 is the sum of the importance assigned 

to the battlefields favoring player A and the more valuable neutral battlefield, �̅� =
𝑎+𝑏

2
=

𝑓(0,0) and 𝑣 is the expected payoff for player A. As shown in Proposition 1, a and b are 

lower and upper bounds, respectively, on the payoffs players can receive. (B), therefore, 

has values between 0 and 1, with large values when payoffs are near either the upper or 

lower bound.  As shown in the Table below, the correlation between (A) and (B) over all 

experiments is 0.64.  This large, positive correlation is the basis for Observation 1.   

Table A1 shows some of the results of our Experiment 1 simulations. Observation 

1 follows from rows 3 – 7.  Observation 2 follows from rows 8 and 9, while Observation 

3 is from rows 10 and 11, and Observation 4 is from rows 12 and 13.  For Observation 4, 

we consider equilibria in which both players have significant mass points (exceeding 

0.11) at the same end of the probability distribution.  Note that the results for the 

boundary and middle mappings are very similar for the linear case.  They are also similar 

for the square root case, with the exception of rows 2, 6, 7, 10 and 12. 

 

Experiment 2:  Unequal Resources 

Observations 5 – 7 come from the same experiment. Here, parameters are 

generated according to the following rules: 𝑅𝐴 is randomly drawn from the set {1.01, 

1.02, 1.03, …, 1.20} and 𝑅𝐵 = 1. The conditions on advantages are designed such that 
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ΓB ⊃ (0.4,0.6) and ΓA ⊃ (
𝑅𝐴

2
− 0.1,

𝑅𝐴

2
+ 0.1). This requires �̅�1, �̅�2 ≤

𝑅𝐴

2
− 0.1, �̅�3, �̅�4 ≥

𝑅𝐴

2
+ 0.1, �̅�1, �̅�2 ≤ 0.4, �̅�3, �̅�4 ≥ 0.6. This in turn translates into the following bounds on 

the 𝛼𝑖𝑗 .   

For ℎ(𝑥) = 𝑥:  

𝛼3𝑚 ≥ 𝑅𝐵 −
𝑅𝐴

2
+ 0.1, −𝛼1𝑛 ≥

𝑅𝐴

2
+ 0.1, −𝛼1𝑚 ≥

𝑅𝐴

2
+ 0.1, 𝛼3𝑛 ≥ 𝑅𝐵 −

𝑅𝐴

2
+

0.1, −𝛼1𝑚 ≥ 𝑅𝐴 −
𝑅𝐵

2
+ 0.1, 𝛼3𝑛 ≥

𝑅𝐵

2
+ 0.1, 𝛼3𝑚 ≥

𝑅𝐵

2
+ 0.1, −𝛼1𝑛 ≥ 𝑅𝐴 −

𝑅𝐵

2
+

0.1  

For ℎ(𝑥) = √𝑥: 

 𝛼3𝑚 ≥ √𝑅𝐵 −√
𝑅𝐴

2
− 0.1, −𝛼1𝑛 ≥ √

𝑅𝐴

2
+ 0.1, −𝛼1𝑚 ≥ √

𝑅𝐴

2
+ 0.1, 𝛼3𝑛 ≥

√𝑅𝐵 −√
𝑅𝐴

2
− 0.1, −𝛼1𝑚 ≥ √𝑅𝐴 −√

𝑅𝐵

2
− 0.1, 𝛼3𝑛 ≥ √

𝑅𝐵

2
+ 0.1, 𝛼3𝑚 ≥

√
𝑅𝐵

2
+ 0.1, −𝛼1𝑛 ≥ √𝑅𝐴 −√

𝑅𝐵

2
− 0.1.  

 

Each parameter 𝛼𝑖𝑗 is drawn for each instance from a uniform distribution bounded from 

below using the above formulas and bounded from above with 0.99.  As previously, 

𝜃𝑖𝑗~𝑈[0.1,1).  Here, the resolutions are set to 100𝑅𝐴 × 100 for the middle setting and 

[100𝑅𝐴 + 1] × 101 for the boundary setting.  

Table A2 shows some of the results of our Experiment 2 analyses. Observation 5 

follows from rows 4 – 6.  Observation 6 follows from row 7, while Observation 7 is from 

row 8. 
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Experiment 3:  Slackness 

To show Observation 8, we must calculate the equilibrium payoffs for different 

resource levels.  In order to speed up the calculations in this experiment, the output files 

include only the calculation of the value of the objective function.  The parameters are the 

same as in Experiment 1, and each iteration increases 𝑅𝐴 by 0.02, and the resolution for 

Player A by one.  We perform 51 iterations, so that for each experiment we start with 

𝑅𝐴 = 1 and end with 𝑅𝐴 = 2. We compute the expected payoffs from the game for each 

of the 200 sets of parameters to see how they change as we increase resources for player 

A. The results are summarized Table A3. 

Observation 9 follows from comparison of the identity and square root columns in 

the tables from all three experiments. 

 

Notes on Figures 3 -7 

Figures 3 – 6 are all from Experiment 3.  Figures 3 - 5 depict simulated probability 

density functions for sample equilibrium strategies for Players A and B, while Figure 6 

depicts the payoff function.  Figure 7 is constructed separately and is not based on the 

results obtained with Experiment 3.  The parameters used for construction of the figures, 

as well as h functions, mappings, and dimensions of the F matrix are given in Table A4. 

 

Figure 3 

The top line below the horizontal axis indicates which parts of the [0,1] interval may be 

in the support, while the bottom line indicates which parts of the [0,1] interval must be in 
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the support. Γ is the interval between the points named as inf Γ and sup Γ. The graph has 

been truncated from the top for clarity of exposition. 

 

Figure 4 

Γ is the interval between the points named as inf Γ and sup Γ, in which density is 

periodically decreasing for player A – that is, decreasing over wide ranges but possibly 

increasing locally – and periodically increasing for player B.  Note that θ2m < θ2n; thus, 

the resource advantaged player (A) is going after (2,n), the more valuable neutral 

battlefield. 

 

Figure 5 

The line below the horizontal axis indicates which parts of the [0, 𝑅𝑖] interval may be in 

the actual support. 

 

Figure 6 

For the simple variant, all advantages are increased to 10. Light shades of gray indicate 

low values of the payoff function, and increases in the expected payoff are shown with 

increasingly dark shades of gray.  The shades of gray are adjusted automatically within 

each picture so that the full spectrum is utilized.  Thus, inter-figure comparisons using 

colors may be misleading. 

 

Figure 7 
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This Figure does not come from Experiment 3.  The variable on the horizontal axis is 𝑅𝐴, 

and the variable on the vertical axis is the expected payoff for player A. In the series 

denoted by “1,” the advantages listed in Table A4 are used.  In the series denoted by “0” 

all advantages are set to 0. In the series denoted by “0.1” the 𝛼𝑖𝑗 shown in Table A4 are 

reduced by 90%. In the series denoted by “0.2” the 𝛼𝑖𝑗 shown in Table A4 are reduced by 

80%. In the series denoted by “10” all advantages are set in magnitude to 10, so that the 

game involves only two neutral battlefields. In neither variant does Player A have enough 

resources to win all battlefields. The total value of all battlefields is approximately 4.816. 

However, in all variants there are intervals between 1 and 2 in which changing 𝑅𝐴 does 

not affect the expected payoff from the game. 
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Table A1:  Basic Statistics for Experiment 1 

 Quantity Boundary, 

identity 

Middle, 

identity 

Boundary, 

sqrt 

Middle, 

sqrt 

Total 

1 Observations 50 50 50 50 200 

2 Seemingly pure strategy 

equilibrium 

12 10 1 15 38 

3 Player A puts weight in Γ 15 15 14 12 56 

4 Player B puts weight in Γ 15 16 13 15 59 

5 Neither player puts weight in 

Γ 

20 19 23 23 85 

6 Neither player puts weight in 

Γ, MSNE 

8 9 22 8 47 

7 Correlation between (A) and 

(B) 

0.58 0.59 0.57 0.81 0.64 

8 Player with weight in Γ is the 

player winning less than (0,0) 

28 30 25 27 110 

9 Player with weight in Γ is the 

player winning more than 

(0,0) 

2 1 2 0 5 

10 Non-PSNE cases where 

interval that must not contain 

weight is larger than Γ 

33 34 49 35 151 

11 Non-PSNE cases where 

interval that must not contain 

weight is approximately Γ 

5 6 0 0 11 

12 Both players have a mass 

point assigning a weight to a 

theater with more valuable 

neutral battlefield 

40 36 32 45 153 

13 Both players have a mass 

point assigning a weight to a 

theater with less valuable 

neutral battlefield 

0 0 0 0 0 
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Table A2:  Basic Statistics for Experiment 2 

 Quantity Boundary, 

identity 

Middle, 

identity 

Boundary, 

sqrt 

Middle, 

sqrt 

Total 

1 Observations 50 50 50 50 200 

2 Solver failures 9 8 7 6 30 

3 Seemingly PSNE 0 0 0 0 0 

4 Both players have weight in Γ 36 34 39 41 150 

5 Exactly one player has weight 

in Γ 

3 2 4 3 12 

6 Neither player has weight in Γ 2 6 0 0 8 

7 Player A clearly tends to put 

more resources towards theater 

with more valuable battlefield 

inside Γ and Player B does the 

opposite 

36 31 39 40 146 

8 Support may be connected for 

both players in considerable 

parts of Γ  

13 10 5 3 31 

 

 

 

Table A3:  Basic Statistics for Experiment 3 

Quantity Boundary, 

identity 

Middle, 

identity 

Boundary, 

sqrt 

Middle, 

sqrt 

Total 

Experiments 50 50 50 50 200 

Observations 2550 2550 2550 2550 10200 

Solver failures 58 56 30 20 164 

Observations with the same 

expected value as the previous 

observation 

96 98 809 823 1826 

Experiments with at least one 

instance of “slackness” 

29 30 50 50 159 
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Table A4:  Parameters, h functions, mappings and dimensions of the F matrix for Figures 

3 - 7 

 

 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 

1m 0.215 0.264 1 0.955 0.611 

2m 0.782 0.561 0.56 0.633 0.894 

3m 0.150 0.395 1 0.661 0.850 

1n 0.548 0.669 1 0.51 0.857 

2n 0.631 0.800 0.52 0.746 0.954 

3n 0.541 0.621 1 0.505 0.631 

1m -0.726 -0.897 -10 -0.829 -0.940 

1n -0.733 -0.839 -10 -0.946 -0.830 

3m 0.748 0.667 10 0.886 0.879 

3n 0.679 0.871 10 0.814 0.869 

RA 1 1.06 1.08 1.23 n/a 

RB 1 1 1 1 n/a 

hij(x) x x √𝑥 x √𝑥 

Mapping middle middle boundary middle boundary 

Dimensions of  

F matrix 

50×50 106×100 109×101 123×100 (100RA+1)×101 

 
Note:  The values for ij and ij for Figures 3, 4 ,6 and 7 are reported to the first three digits.  The 

advantages given in this Table for Figure 7 are for the series denoted by “1” in the Figure.  The values for 

other series in Figure 7 can be found in the Notes for Figure 7. 
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Figure 1:  Post-campaign advantages in each theater 

 

 
 

 

Figure 2: Payoff function 

 

 
 

Note: schematic representation of the 𝑓(𝑥𝑚, 𝑦𝑚) function. Flat areas are separated by lines at which there 

are ties. Squares filled with black indicate which battlefields are won by player A according to the table at 

the top of the picture. 

𝛼1𝑛 + ℎ1𝑛(𝑥𝑛) − ℎ1𝑛(𝑦𝑛)         ℎ2𝑛(𝑥𝑛) − ℎ2𝑛(𝑦𝑛)        𝛼3𝑛 + ℎ3𝑛(𝑥𝑛) − ℎ3𝑛(𝑦𝑛) 

(1,𝑛)              (2,𝑛)                                                  (3,𝑛) 

(1,𝑚)             (2,𝑚)                                               (3,𝑚) 

𝛼1𝑚 + ℎ1𝑚(𝑥𝑚) − ℎ1𝑚(𝑦𝑚)     ℎ2𝑚(𝑥𝑚) − ℎ2𝑚(𝑦𝑚)     𝛼3𝑚 + ℎ3𝑚(𝑥𝑚) − ℎ3𝑚(𝑦𝑚) 
 

advantage to 𝐵 advantage to 𝐴 
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Figure 3. Example mixed strategies for the case with equal resources. 

Player A: 

 
Player B: 

 
See Appendix 2 for a description of parameters and mappings used to create this Figure.   
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Figure 4. Example mixed equilibrium strategies when resources are unequal. 

Player A: 

 
Player B: 

 
See Appendix 2 for a description of parameters and mappings used to create this Figure.   
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Figure 5. Example mixed strategy for simple Blotto game with unequal resources 

 

 

Player A: 

 
 

Player B: 

 
 

See Appendix 2 for a description of parameters and mappings used to create this Figure.   

  



 

58 

 

Figure 6: Sample payoff functions for the “simple variant” and the “regular variant” 

 

Simple variant: 

 

 
 

 

Regular variant: 

 

 
 
See Appendix 2 for a description of parameters and mappings used to create this Figure.   
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Figure 7: Change in expected payoff with respect to difference in resources 

 

 
 
See Appendix 2 for a description of parameters and mappings used to create this Figure.   
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